BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 16537389)

  • 41. Effect of SOS-induced Pol II, Pol IV, and Pol V DNA polymerases on UV-induced mutagenesis and MFD repair in Escherichia coli cells.
    Wrzesiński M; Nowosielska A; Nieminuszczy J; Grzesiuk E
    Acta Biochim Pol; 2005; 52(1):139-47. PubMed ID: 15827613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Escherichia coli Y family DNA polymerases.
    Walsh JM; Hawver LA; Beuning PJ
    Front Biosci (Landmark Ed); 2011 Jun; 16(8):3164-82. PubMed ID: 21622227
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo.
    Bjedov I; Dasgupta CN; Slade D; Le Blastier S; Selva M; Matic I
    Genetics; 2007 Jul; 176(3):1431-40. PubMed ID: 17483416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Non-mutagenic and mutagenic post-replicative DNA repair in prokaryotic and eukaryotic cells].
    Zhestianikov VD
    Tsitologiia; 2000; 42(9):837-43. PubMed ID: 11077674
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The inactivation of rfaP, rarA or sspA gene improves the viability of the Escherichia coli DNA polymerase III holD mutant.
    Michel B; Sinha AK
    Mol Microbiol; 2017 Jun; 104(6):1008-1026. PubMed ID: 28342235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage.
    Thrall ES; Kath JE; Chang S; Loparo JJ
    Nat Commun; 2017 Dec; 8(1):2170. PubMed ID: 29255195
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on Escherichia coli chromosome proteins. II. DNA polymerases associated with the nucleoid.
    Moriya T; Joh KI; Hori K
    Biochim Biophys Acta; 1981 Sep; 655(2):189-94. PubMed ID: 7025907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA lesions proximity modulates damage tolerance pathways in Escherichia coli.
    Chrabaszcz É; Laureti L; Pagès V
    Nucleic Acids Res; 2018 May; 46(8):4004-4012. PubMed ID: 29529312
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA polymerase III holoenzyme of Escherichia coli: an asymmetric dimeric replicative complex containing distinguishable leading and lagging strand polymerases.
    McHenry CS; Johanson KO
    Adv Exp Med Biol; 1984; 179():315-9. PubMed ID: 6395660
    [No Abstract]   [Full Text] [Related]  

  • 50. Translesion synthesis DNA polymerases and control of genome stability.
    Shcherbakova PV; Fijalkowska IJ
    Front Biosci; 2006 Sep; 11():2496-517. PubMed ID: 16720328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A gatekeeping function of the replicative polymerase controls pathway choice in the resolution of lesion-stalled replisomes.
    Chang S; Naiman K; Thrall ES; Kath JE; Jergic S; Dixon NE; Fuchs RP; Loparo JJ
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25591-25601. PubMed ID: 31796591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis.
    Kath JE; Jergic S; Heltzel JM; Jacob DT; Dixon NE; Sutton MD; Walker GC; Loparo JJ
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7647-52. PubMed ID: 24825884
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pol V-Mediated Translesion Synthesis Elicits Localized Untargeted Mutagenesis during Post-replicative Gap Repair.
    Isogawa A; Ong JL; Potapov V; Fuchs RP; Fujii S
    Cell Rep; 2018 Jul; 24(5):1290-1300. PubMed ID: 30067983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Translesion DNA synthesis and mutagenesis in prokaryotes.
    Fuchs RP; Fujii S
    Cold Spring Harb Perspect Biol; 2013 Dec; 5(12):a012682. PubMed ID: 24296168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Translesion replication by DNA polymerase delta depends on processivity accessory proteins and differs in specificity from DNA polymerase beta.
    Daube SS; Tomer G; Livneh Z
    Biochemistry; 2000 Jan; 39(2):348-55. PubMed ID: 10630995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comprehensive comparison of DNA replication past 2-deoxyribose and its tetrahydrofuran analog in Escherichia coli.
    Kroeger KM; Goodman MF; Greenberg MM
    Nucleic Acids Res; 2004; 32(18):5480-5. PubMed ID: 15477395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness.
    Yeiser B; Pepper ED; Goodman MF; Finkel SE
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8737-41. PubMed ID: 12060704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair.
    Fijalkowska IJ; Schaaper RM; Jonczyk P
    FEMS Microbiol Rev; 2012 Nov; 36(6):1105-21. PubMed ID: 22404288
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA polymerase III from Escherichia coli cells expressing mutA mistranslator tRNA is error-prone.
    Al Mamun AA; Marians KJ; Humayun MZ
    J Biol Chem; 2002 Nov; 277(48):46319-27. PubMed ID: 12324458
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Frequent exchange of the DNA polymerase during bacterial chromosome replication.
    Beattie TR; Kapadia N; Nicolas E; Uphoff S; Wollman AJ; Leake MC; Reyes-Lamothe R
    Elife; 2017 Mar; 6():. PubMed ID: 28362256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.