BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 16537393)

  • 1. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies.
    De Genst E; Silence K; Decanniere K; Conrath K; Loris R; Kinne J; Muyldermans S; Wyns L
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4586-91. PubMed ID: 16537393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops.
    Decanniere K; Desmyter A; Lauwereys M; Ghahroudi MA; Muyldermans S; Wyns L
    Structure; 1999 Apr; 7(4):361-70. PubMed ID: 10196124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanobodies: natural single-domain antibodies.
    Muyldermans S
    Annu Rev Biochem; 2013; 82():775-97. PubMed ID: 23495938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single domain camel antibodies: current status.
    Muyldermans S
    J Biotechnol; 2001 Jun; 74(4):277-302. PubMed ID: 11526908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop.
    Fanning SW; Horn JR
    Protein Sci; 2011 Jul; 20(7):1196-207. PubMed ID: 21557375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody.
    Akiba H; Tamura H; Kiyoshi M; Yanaka S; Sugase K; Caaveiro JMM; Tsumoto K
    Sci Rep; 2019 Oct; 9(1):15481. PubMed ID: 31664051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully Human VH Single Domains That Rival the Stability and Cleft Recognition of Camelid Antibodies.
    Rouet R; Dudgeon K; Christie M; Langley D; Christ D
    J Biol Chem; 2015 May; 290(19):11905-17. PubMed ID: 25737448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual beneficial effect of interloop disulfide bond for single domain antibody fragments.
    Govaert J; Pellis M; Deschacht N; Vincke C; Conrath K; Muyldermans S; Saerens D
    J Biol Chem; 2012 Jan; 287(3):1970-9. PubMed ID: 22128183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies.
    Muyldermans S; Lauwereys M
    J Mol Recognit; 1999; 12(2):131-40. PubMed ID: 10398404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient tumor targeting by single-domain antibody fragments of camels.
    Cortez-Retamozo V; Lauwereys M; Hassanzadeh Gh G; Gobert M; Conrath K; Muyldermans S; De Baetselier P; Revets H
    Int J Cancer; 2002 Mar; 98(3):456-62. PubMed ID: 11920600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction to heavy chain antibodies and derived Nanobodies.
    Vincke C; Muyldermans S
    Methods Mol Biol; 2012; 911():15-26. PubMed ID: 22886243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity maturation increases the stability and plasticity of the Fv domain of anti-protein antibodies.
    Acierno JP; Braden BC; Klinke S; Goldbaum FA; Cauerhff A
    J Mol Biol; 2007 Nov; 374(1):130-46. PubMed ID: 17916365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Progress in single-domain antibody derived from heavy-chain antibody].
    Cui HQ; Wang QM
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):497-501. PubMed ID: 16108383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structures of the free and antigen-bound Fab from monoclonal antilysozyme antibody HyHEL-63(,).
    Li Y; Li H; Smith-Gill SJ; Mariuzza RA
    Biochemistry; 2000 May; 39(21):6296-309. PubMed ID: 10828942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies.
    Arbabi Ghahroudi M; Desmyter A; Wyns L; Hamers R; Muyldermans S
    FEBS Lett; 1997 Sep; 414(3):521-6. PubMed ID: 9323027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity.
    Wesolowski J; Alzogaray V; Reyelt J; Unger M; Juarez K; Urrutia M; Cauerhff A; Danquah W; Rissiek B; Scheuplein F; Schwarz N; Adriouch S; Boyer O; Seman M; Licea A; Serreze DV; Goldbaum FA; Haag F; Koch-Nolte F
    Med Microbiol Immunol; 2009 Aug; 198(3):157-74. PubMed ID: 19529959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of VHH antibodies against dengue virus type 2 NS1 and comparison with monoclonal antibodies for use in immunological diagnosis.
    Fatima A; Wang H; Kang K; Xia L; Wang Y; Ye W; Wang J; Wang X
    PLoS One; 2014; 9(4):e95263. PubMed ID: 24751715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris.
    Rahbarizadeh F; Rasaee MJ; Forouzandeh M; Allameh AA
    Mol Immunol; 2006 Feb; 43(5):426-35. PubMed ID: 16337485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three camelid VHH domains in complex with porcine pancreatic alpha-amylase. Inhibition and versatility of binding topology.
    Desmyter A; Spinelli S; Payan F; Lauwereys M; Wyns L; Muyldermans S; Cambillau C
    J Biol Chem; 2002 Jun; 277(26):23645-50. PubMed ID: 11960990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Camelid immunoglobulins and nanobody technology.
    Muyldermans S; Baral TN; Retamozzo VC; De Baetselier P; De Genst E; Kinne J; Leonhardt H; Magez S; Nguyen VK; Revets H; Rothbauer U; Stijlemans B; Tillib S; Wernery U; Wyns L; Hassanzadeh-Ghassabeh G; Saerens D
    Vet Immunol Immunopathol; 2009 Mar; 128(1-3):178-83. PubMed ID: 19026455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.