These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 16537487)

  • 1. The 3D profile method for identifying fibril-forming segments of proteins.
    Thompson MJ; Sievers SA; Karanicolas J; Ivanova MI; Baker D; Eisenberg D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4074-8. PubMed ID: 16537487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments.
    Ivanova MI; Thompson MJ; Eisenberg D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4079-82. PubMed ID: 16537488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential.
    Zhang Z; Chen H; Lai L
    Bioinformatics; 2007 Sep; 23(17):2218-25. PubMed ID: 17599928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid fibril formation from a 9 amino acid peptide, 55th-63rd residues of human lysozyme.
    Tokunaga Y; Matsumoto M; Sugimoto Y
    Int J Biol Macromol; 2015 Sep; 80():208-16. PubMed ID: 26092172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Amyloid Forming Tendency of Peptide Sequences from Amyloid Beta and Tau Proteins Using Force-Field, Semi-Empirical, and Density Functional Theory Calculations.
    Muvva C; Murugan NA; Subramanian V
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray scattering study of the effect of hydration on the cross-beta structure of amyloid fibrils.
    Squires AM; Devlin GL; Gras SL; Tickler AK; MacPhee CE; Dobson CM
    J Am Chem Soc; 2006 Sep; 128(36):11738-9. PubMed ID: 16953596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of beta-amyloid fibril formation.
    Tiana G; Simona F; Broglia RA; Colombo G
    J Chem Phys; 2004 May; 120(17):8307-17. PubMed ID: 15267752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution.
    Klinger AL; Kiselar J; Ilchenko S; Komatsu H; Chance MR; Axelsen PH
    Biochemistry; 2014 Dec; 53(49):7724-34. PubMed ID: 25382225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic structures of amyloid cross-beta spines reveal varied steric zippers.
    Sawaya MR; Sambashivan S; Nelson R; Ivanova MI; Sievers SA; Apostol MI; Thompson MJ; Balbirnie M; Wiltzius JJ; McFarlane HT; Madsen AØ; Riekel C; Eisenberg D
    Nature; 2007 May; 447(7143):453-7. PubMed ID: 17468747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations to investigate the structural stability and aggregation behavior of the GGVVIA oligomers derived from amyloid beta peptide.
    Chang LK; Zhao JH; Liu HL; Liu KT; Chen JT; Tsai WB; Ho Y
    J Biomol Struct Dyn; 2009 Jun; 26(6):731-40. PubMed ID: 19385701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction.
    Inouye H; Fraser PE; Kirschner DA
    Biophys J; 1993 Feb; 64(2):502-19. PubMed ID: 8457674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying the amylome, proteins capable of forming amyloid-like fibrils.
    Goldschmidt L; Teng PK; Riek R; Eisenberg D
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3487-92. PubMed ID: 20133726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of aggregation-prone regions in structured proteins.
    Tartaglia GG; Pawar AP; Campioni S; Dobson CM; Chiti F; Vendruscolo M
    J Mol Biol; 2008 Jul; 380(2):425-36. PubMed ID: 18514226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR characterization of the interaction of GroEL with amyloid β as a model ligand.
    Yagi-Utsumi M; Kunihara T; Nakamura T; Uekusa Y; Makabe K; Kuwajima K; Kato K
    FEBS Lett; 2013 Jun; 587(11):1605-9. PubMed ID: 23603391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Initiation, Association, and Formation of Amyloid Fibrils Modeled with the N-Terminal Peptide Fragment, IKYLEFIS, of Myoglobin G-Helix.
    Patel S; Sasidhar YU; Chary KVR
    J Phys Chem B; 2017 Aug; 121(32):7536-7549. PubMed ID: 28707888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of amyloidogenic peptide traps.
    Sahtoe DD; Andrzejewska EA; Han HL; Rennella E; Schneider MM; Meisl G; Ahlrichs M; Decarreau J; Nguyen H; Kang A; Levine P; Lamb M; Li X; Bera AK; Kay LE; Knowles TPJ; Baker D
    Nat Chem Biol; 2024 Aug; 20(8):981-990. PubMed ID: 38503834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state NMR as a method to reveal structure and membrane-interaction of amyloidogenic proteins and peptides.
    Naito A; Kawamura I
    Biochim Biophys Acta; 2007 Aug; 1768(8):1900-12. PubMed ID: 17524351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.