These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16537822)

  • 1. Moving closer to an understanding of the hyperfiltration of type 2 diabetes mellitus.
    Wesson DE
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R973-4. PubMed ID: 16537822
    [No Abstract]   [Full Text] [Related]  

  • 2. Hyperfiltration, nitric oxide, and diabetic nephropathy.
    Levine DZ
    Curr Hypertens Rep; 2006 May; 8(2):153-7. PubMed ID: 16672149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubuloglomerular feedback in renal hypertrophy.
    Pollock CA; Lawrence JR; Field MJ
    Kidney Int Suppl; 1991 Jun; 32():S106-9. PubMed ID: 1881031
    [No Abstract]   [Full Text] [Related]  

  • 4. Beraprost sodium, prostacyclin analogue, attenuates glomerular hyperfiltration and glomerular macrophage infiltration by modulating ecNOS expression in diabetic rats.
    Yamashita T; Shikata K; Matsuda M; Okada S; Ogawa D; Sugimoto H; Wada J; Makino H
    Diabetes Res Clin Pract; 2002 Sep; 57(3):149-61. PubMed ID: 12126764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of renal nitric oxide contribution to hyperfiltration in diabetic rats.
    Schwartz D; Schwartz IF; Blantz RC
    J Lab Clin Med; 2001 Feb; 137(2):107-14. PubMed ID: 11174467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of adrenomedullin and receptors in glomerular hyperfiltration in streptozotocin-induced diabetic rats.
    Hiragushi K; Wada J; Eguchi J; Matsuoka T; Yasuhara A; Hashimoto I; Yamashita T; Hida K; Nakamura Y; Shikata K; Minamino N; Kangawa K; Makino H
    Kidney Int; 2004 Feb; 65(2):540-50. PubMed ID: 14717924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nitric oxide in renal function in rats with short and prolonged periods of streptozotocin-induced diabetes.
    Suanarunsawat T; Klongpanichapak S; Chaiyabutr N
    Diabetes Obes Metab; 1999 Nov; 1(6):339-46. PubMed ID: 11225650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes.
    Lau C; Sudbury I; Thomson M; Howard PL; Magil AB; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1761-70. PubMed ID: 19339676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of nitric oxide in the pathogenesis of diabetic nephropathy in streptozotocin-induced diabetic rats.
    Choi KC; Lee SC; Kim SW; Kim NH; Lee JU; Kang YJ
    Korean J Intern Med; 1999 Jan; 14(1):32-41. PubMed ID: 10063312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current concepts of renal hemodynamics in diabetes.
    Anderson S; Vora JP
    J Diabetes Complications; 1995; 9(4):304-7. PubMed ID: 8573753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-Citrulline, but not L-arginine, prevents diabetes mellitus-induced glomerular hyperfiltration and proteinuria in rat.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Hypertension; 2014 Aug; 64(2):323-9. PubMed ID: 24866144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of single-nephron GFR in the db/db mouse model of type 2 diabetes mellitus.
    Levine DZ; Iacovitti M; Robertson SJ; Mokhtar GA
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R975-81. PubMed ID: 16339386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glomerular hemodynamic and structural alterations in experimental diabetes mellitus.
    O'Donnell MP; Kasiske BL; Keane WF
    FASEB J; 1988 May; 2(8):2339-47. PubMed ID: 3282959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time measurement of kidney tubule fluid nitric oxide concentrations in early diabetes: disparate changes in different rodent models.
    Levine DZ; Iacovitti M
    Nitric Oxide; 2006 Aug; 15(1):87-92. PubMed ID: 16510300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy.
    Sugimoto H; Shikata K; Matsuda M; Kushiro M; Hayashi Y; Hiragushi K; Wada J; Makino H
    Diabetologia; 1998 Dec; 41(12):1426-34. PubMed ID: 9867209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide.
    De Vriese AS; Stoenoiu MS; Elger M; Devuyst O; Vanholder R; Kriz W; Lameire NH
    Kidney Int; 2001 Jul; 60(1):202-10. PubMed ID: 11422752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-Peptide effects on renal physiology and diabetes.
    Rebsomen L; Khammar A; Raccah D; Tsimaratos M
    Exp Diabetes Res; 2008; 2008():281536. PubMed ID: 18509500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of diabetes-associated renal hyperfiltration and nitric oxide production by pregnancy in rats.
    Omer S; Shan J; Varma DR; Mulay S
    J Endocrinol; 1999 Apr; 161(1):15-23. PubMed ID: 10194524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Glomerular hyperfiltration in diabetic nephropathy].
    Ito O; Ito S
    Nihon Rinsho; 2005 Jun; 63 Suppl 6():331-5. PubMed ID: 15999729
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of neuronal nitric oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes.
    Komers R; Lindsley JN; Oyama TT; Allison KM; Anderson S
    Am J Physiol Renal Physiol; 2000 Sep; 279(3):F573-83. PubMed ID: 10966937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.