These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16538265)

  • 1. Simple thermodynamics for unravelling sophisticated self-assembly processes.
    Hamacek J; Borkovec M; Piguet C
    Dalton Trans; 2006 Mar; (12):1473-90. PubMed ID: 16538265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Five thermodynamic describers for addressing serendipity in the self-assembly of polynuclear complexes in solution.
    Piguet C
    Chem Commun (Camb); 2010 Sep; 46(34):6209-31. PubMed ID: 20607190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple thermodynamic model for quantitatively addressing cooperativity in multicomponent self-assembly processes--part 1: Theoretical concepts and application to monometallic coordination complexes and bimetallic helicates possessing identical binding sites.
    Hamacek J; Borkovec M; Piguet C
    Chemistry; 2005 Sep; 11(18):5217-26. PubMed ID: 15991210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple thermodynamic model for quantitatively addressing cooperativity in multicomponent self-assembly processes--Part 2: Extension to multimetallic helicates possessing different binding sites.
    Hamacek J; Borkovec M; Piguet C
    Chemistry; 2005 Sep; 11(18):5227-37. PubMed ID: 15991209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective.
    Pardo E; Ruiz-García R; Cano J; Ottenwaelder X; Lescouëzec R; Journaux Y; Lloret F; Julve M
    Dalton Trans; 2008 Jun; (21):2780-805. PubMed ID: 18478138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to adapt Scatchard plot for graphically addressing cooperativity in multicomponent self-assemblies.
    Hamacek J; Piguet C
    J Phys Chem B; 2006 Apr; 110(15):7783-92. PubMed ID: 16610874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides.
    Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR
    J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral metallocycles: rational synthesis and novel applications.
    Lee SJ; Lin W
    Acc Chem Res; 2008 Apr; 41(4):521-37. PubMed ID: 18271561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective concentration as a tool for quantitatively addressing preorganization in multicomponent assemblies: application to the selective complexation of lanthanide cations.
    Canard G; Koeller S; Bernardinelli G; Piguet C
    J Am Chem Soc; 2008 Jan; 130(3):1025-40. PubMed ID: 18154294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enthalpy-entropy correlations as chemical guides to unravel self-assembly processes.
    Piguet C
    Dalton Trans; 2011 Aug; 40(32):8059-71. PubMed ID: 21629958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using light to induce energy and electron transfer or molecular motions in multicomponent systems.
    Ballardini R; Credi A; Gandolfi MT; Marchioni F; Silvi S; Venturi M
    Photochem Photobiol Sci; 2007 Apr; 6(4):345-56. PubMed ID: 17404627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice model of equilibrium polymerization. VII. Understanding the role of "cooperativity" in self-assembly.
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2008 Jun; 128(22):224901. PubMed ID: 18554047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperativity in macromolecular assembly.
    Williamson JR
    Nat Chem Biol; 2008 Aug; 4(8):458-65. PubMed ID: 18641626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed supramolecular assembly of Cu(II)-based "paddlewheels" into infinite 1-D chains using structurally bifunctional ligands.
    Aakeröy CB; Schultheiss N; Desper J
    Dalton Trans; 2006 Apr; (13):1627-35. PubMed ID: 16547537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Bioinorganic Materials at the Interface of Coordination and Biosupramolecular Chemistry.
    Maity B; Ueno T
    Chem Rec; 2017 Apr; 17(4):383-398. PubMed ID: 28028896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis.
    Laungani AC; Slattery JM; Krossing I; Breit B
    Chemistry; 2008; 14(15):4488-502. PubMed ID: 18449870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-independent link between the macroscopic and microscopic descriptions of multidentate macromolecular binding: relationship between stepwise, intrinsic, and microscopic equilibrium constants.
    Lluís Garcés J; Rey-Castro C; David C; Madurga S; Mas F; Pastor I; Puy J
    J Phys Chem B; 2009 Nov; 113(46):15145-55. PubMed ID: 19905020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal-organic frameworks.
    MacGillivray LR; Papaefstathiou GS; Friscić T; Hamilton TD; Bucar DK; Chu Q; Varshney DB; Georgiev IG
    Acc Chem Res; 2008 Feb; 41(2):280-91. PubMed ID: 18281948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination and organometallic compounds as anion receptors and sensors.
    Steed JW
    Chem Soc Rev; 2009 Feb; 38(2):506-19. PubMed ID: 19169464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reticular chemistry of metal-organic polyhedra.
    Tranchemontagne DJ; Ni Z; O'Keeffe M; Yaghi OM
    Angew Chem Int Ed Engl; 2008; 47(28):5136-47. PubMed ID: 18528833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.