BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16538629)

  • 1. Probing nucleocytoplasmic transport by two-photon activation of PA-GFP.
    Chen Y; MacDonald PJ; Skinner JP; Patterson GH; Müller JD
    Microsc Res Tech; 2006 Mar; 69(3):220-6. PubMed ID: 16538629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time.
    Martini J; Schmied K; Palmisano R; Toensing K; Anselmetti D; Merkle T
    J Struct Biol; 2007 Jun; 158(3):401-9. PubMed ID: 17363273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single molecule spectroscopic characterization of GFP-MUT2 mutant for two-photon microscopy applications.
    Cannone F; Caccia M; Bologna S; Diaspro A; Chirico G
    Microsc Res Tech; 2004 Nov; 65(4-5):186-93. PubMed ID: 15630692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region.
    Schneider M; Barozzi S; Testa I; Faretta M; Diaspro A
    Biophys J; 2005 Aug; 89(2):1346-52. PubMed ID: 15908572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green fluorescent protein-tagging reduces the nucleocytoplasmic shuttling specifically of unphosphorylated STAT1.
    Meyer T; Begitt A; Vinkemeier U
    FEBS J; 2007 Feb; 274(3):815-26. PubMed ID: 17288561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy.
    Chen TS; Zeng SQ; Luo QM; Zhang ZH; Zhou W
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1272-5. PubMed ID: 11883955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond photobleaching, laser illumination unbinds fluorescent proteins.
    Heinze KG; Costantino S; De Koninck P; Wiseman PW
    J Phys Chem B; 2009 Apr; 113(15):5225-33. PubMed ID: 19309095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial control of pa-GFP photoactivation in living cells.
    Testa I; Parazzoli D; Barozzi S; Garrè M; Faretta M; Diaspro A
    J Microsc; 2008 Apr; 230(Pt 1):48-60. PubMed ID: 18387039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of nucleocytoplasmic trafficking by retention in cytoplasm or nucleus.
    Roth DM; Harper I; Pouton CW; Jans DA
    J Cell Biochem; 2009 Aug; 107(6):1160-7. PubMed ID: 19507231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon microscopy of cells and tissue.
    Rubart M
    Circ Res; 2004 Dec; 95(12):1154-66. PubMed ID: 15591237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear localization of enhanced green fluorescent protein homomultimers.
    Seibel NM; Eljouni J; Nalaskowski MM; Hampe W
    Anal Biochem; 2007 Sep; 368(1):95-9. PubMed ID: 17586454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live cell ultraviolet microscopy: a comparison between two- and three-photon excitation.
    Balaji J; Desai R; Maiti S
    Microsc Res Tech; 2004 Jan; 63(1):67-71. PubMed ID: 14677135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microinjected antibodies interfere with protein nucleocytoplasmic shuttling by distinct molecular mechanisms.
    Marg A; Meyer T; Vigneron M; Vinkemeier U
    Cytometry A; 2008 Dec; 73A(12):1128-40. PubMed ID: 18773464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective fluorescence recovery after bleaching of single E2GFP proteins induced by two-photon excitation.
    Chirico G; Diaspro A; Cannone F; Collini M; Bologna S; Pellegrini V; Beltram F
    Chemphyschem; 2005 Feb; 6(2):328-35. PubMed ID: 15751356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single molecule tracking for studying nucleocytoplasmic transport and intranuclear dynamics.
    Siebrasse JP; Kubitscheck U
    Methods Mol Biol; 2009; 464():343-61. PubMed ID: 18951194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A differential ligand-mediated response of green fluorescent protein-tagged androgen receptor in living prostate cancer and non-prostate cancer cell lines.
    Nakauchi H; Matsuda K; Ochiai I; Kawauchi A; Mizutani Y; Miki T; Kawata M
    J Histochem Cytochem; 2007 Jun; 55(6):535-44. PubMed ID: 17312014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GFP-p65 knock-in mice as a tool to study NF-kappaB dynamics in vivo.
    De Lorenzi R; Gareus R; Fengler S; Pasparakis M
    Genesis; 2009 May; 47(5):323-9. PubMed ID: 19263497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient photoconversion distorts the fluorescence lifetime of GFP in confocal microscopy: a model kinetic study on mutant Thr203Val.
    Jung G; Werner M; Schneider M
    Chemphyschem; 2008 Sep; 9(13):1867-74. PubMed ID: 18752240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting.
    Becker W; Bergmann A; Haustein E; Petrasek Z; Schwille P; Biskup C; Kelbauskas L; Benndorf K; Klöcker N; Anhut T; Riemann I; König K
    Microsc Res Tech; 2006 Mar; 69(3):186-95. PubMed ID: 16538624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobleaching approaches to investigate diffusional mobility and trafficking of Ras in living cells.
    Goodwin JS; Kenworthy AK
    Methods; 2005 Oct; 37(2):154-64. PubMed ID: 16288889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.