These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16539048)

  • 1. Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula.
    Dai GM
    J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):539-43. PubMed ID: 16539048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct transformation of Zernike eye aberration coefficients between scaled, rotated, and/or displaced pupils.
    Bará S; Arines J; Ares J; Prado P
    J Opt Soc Am A Opt Image Sci Vis; 2006 Sep; 23(9):2061-6. PubMed ID: 16912732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Errors in Zernike transformations and non-modal reconstruction methods.
    Neal DR; Baer CD; Topa DM
    J Refract Surg; 2005; 21(5):S558-62. PubMed ID: 16209461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spherical aberration of the anterior and posterior surfaces of the human cornea.
    Sicam VA; Dubbelman M; van der Heijde RG
    J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):544-9. PubMed ID: 16539049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A refined bootstrap method for estimating the Zernike polynomial model order for corneal surfaces.
    Iskander DR; Morelande MR; Collins MJ; Buehren T
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2203-6. PubMed ID: 15605870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optics of the average normal cornea from general and canonical representations of its surface topography.
    Navarro R; González L; Hernández JL
    J Opt Soc Am A Opt Image Sci Vis; 2006 Feb; 23(2):219-32. PubMed ID: 16477826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective refraction from aberrometry: theory.
    Navarro R
    J Biomed Opt; 2009; 14(2):024021. PubMed ID: 19405751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weighted Zernike expansion with applications to the optical aberration of the human eye.
    Nam J; Rubinstein J
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1709-16. PubMed ID: 16211797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences between real and predicted corneal shapes after aspherical corneal ablation.
    Anera RG; Villa C; Jiménez JR; Gutiérrez R; del Barco LJ
    Appl Opt; 2005 Jul; 44(21):4528-32. PubMed ID: 16047903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal primary aberrations compensation by oblique light incidence.
    Espinosa J; Mas D; Kasprzak HT
    J Biomed Opt; 2009; 14(4):044003. PubMed ID: 19725715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of wavefront-guided corrections to see if they fully correct ocular aberrations.
    Campbell CE
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1559-65. PubMed ID: 16783417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Schematic eye with a gradient-index lens and aspheric surfaces.
    Siedlecki D; Kasprzak H; Pierscionek BK
    Opt Lett; 2004 Jun; 29(11):1197-9. PubMed ID: 15209245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of real and computer-simulated outcomes of LASIK refractive surgery.
    Cano D; Barbero S; Marcos S
    J Opt Soc Am A Opt Image Sci Vis; 2004 Jun; 21(6):926-36. PubMed ID: 15191172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal surface reconstruction algorithm using Zernike polynomial representation: improvements.
    Turuwhenua J
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1551-61. PubMed ID: 17491623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils.
    Lundström L; Unsbo P
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):569-77. PubMed ID: 17301846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Zernike-fit error on simulated high- and low-contrast acuity in keratoconus: implications for using Zernike-based corrections.
    Marsack JD; Pesudovs K; Sarver EJ; Applegate RA
    J Opt Soc Am A Opt Image Sci Vis; 2006 Apr; 23(4):769-76. PubMed ID: 16604756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematics of Zernike polynomials: a review.
    McAlinden C; McCartney M; Moore J
    Clin Exp Ophthalmol; 2011 Nov; 39(8):820-7. PubMed ID: 22050568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The practicality of wavefront correction in ophthalmology].
    Preussner PR
    Klin Monbl Augenheilkd; 2004 Jun; 221(6):456-63. PubMed ID: 15236104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational and rotational pupil tracking by use of wavefront aberration data and image registration techniques.
    Diaz-Santana L; Arines J; Gesto PP; Bará SX
    Opt Lett; 2006 Jun; 31(11):1642-4. PubMed ID: 16688247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system.
    Braat JJ; Dirksen P; Janssen AJ; van Haver S; van de Nes AS
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2635-50. PubMed ID: 16396023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.