These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16539226)

  • 1. Optical characterization of an unknown single layer: Institut Fresnel contribution to the Optical Interference Coatings 2004 Topical Meeting Measurement Problem.
    Lemarchand F; Deumié C; Zerrad M; Abel-Tiberini L; Bertussi B; Georges G; Lazaridès B; Cathelinaud M; Lequime M; Amra C
    Appl Opt; 2006 Mar; 45(7):1312-8. PubMed ID: 16539226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light scattering characterization of single-layer nanoporous SiO
    Sekman Y; Felde N; Ghazaryan L; Szeghalmi A; Schröder S
    Appl Opt; 2020 Feb; 59(5):A143-A149. PubMed ID: 32225366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antireflective coatings on Fresnel lenses by spin-coating of solid silica nanoparticles.
    Zhou G; He J
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5534-41. PubMed ID: 23882790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates.
    Du Y; Luna LE; Tan WS; Rubner MF; Cohen RE
    ACS Nano; 2010 Jul; 4(7):4308-16. PubMed ID: 20536211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical interference coatings 2007 measurement problem.
    Duparré A; Ristau D
    Appl Opt; 2008 May; 47(13):C179-84. PubMed ID: 18449243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness.
    Berman D; Guha S; Lee B; Elam JW; Darling SB; Shevchenko EV
    ACS Nano; 2017 Mar; 11(3):2521-2530. PubMed ID: 28139905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thickness and morphology of polyelectrolyte coatings on silica surfaces before and after protein exposure studied by atomic force microscopy.
    Haselberg R; Flesch FM; Boerke A; Somsen GW
    Anal Chim Acta; 2013 May; 779():90-5. PubMed ID: 23663676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system.
    Guo C; Kong M; Liu C; Li B
    Appl Opt; 2013 Feb; 52(4):B26-32. PubMed ID: 23385938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous determination of optical constants, thickness, and surface roughness of thin film from spectrophotometric measurements.
    Guo C; Kong M; Gao W; Li B
    Opt Lett; 2013 Jan; 38(1):40-2. PubMed ID: 23282831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow Rodlike MgF
    Bao L; Ji Z; Wang H; Chen R
    Langmuir; 2017 Jun; 33(25):6240-6247. PubMed ID: 28602095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topical meeting on optical interference coatings (OIC'2001): manufacturing problem.
    Dobrowolski JA; Browning S; Jacobson M; Nadal M
    Appl Opt; 2002 Jun; 41(16):3039-52. PubMed ID: 12064379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical interference method for the approximate determination of refractive index and thickness of a transparent layer.
    Goodman AM
    Appl Opt; 1978 Sep; 17(17):2779-87. PubMed ID: 20203866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation.
    Ristau D; Günster S; Bosch S; Duparré A; Masetti E; Ferré-Borrull J; Kiriakidis G; Peiró F; Quesnel E; Tikhonravov A
    Appl Opt; 2002 Jun; 41(16):3196-204. PubMed ID: 12064402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment.
    Friedrich K; Wilbrandt S; Stenzel O; Kaiser N; Hoffmann KH
    Appl Opt; 2010 Jun; 49(16):3150-62. PubMed ID: 20517386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roughness evolution and scatter losses of multilayers for 193 nm optics.
    Schröder S; Duparré A; Tünnermann A
    Appl Opt; 2008 May; 47(13):C88-97. PubMed ID: 18449277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color variations of AR coatings caused by a leached layer on the substrate.
    Guenther KH
    Appl Opt; 1981 Jan; 20(1):48-53. PubMed ID: 20309065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grass-like Alumina with Low Refractive Index for Scalable, Broadband, Omnidirectional Antireflection Coatings on Glass Using Atomic Layer Deposition.
    Kauppinen C; Isakov K; Sopanen M
    ACS Appl Mater Interfaces; 2017 May; 9(17):15038-15043. PubMed ID: 28398715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance optimization of 193 nm antireflective coatings with wide incident angle ranges on strongly curved spherical substrates.
    Liu C; Kong M; Li B
    Opt Express; 2018 Jul; 26(15):19524-19533. PubMed ID: 30114123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Self-cleaning Properties of an Efficient and Easy to Scale up TiO
    Isaifan RJ; Samara A; Suwaileh W; Johnson D; Yiming W; Abdallah AA; Aïssa B
    Sci Rep; 2017 Aug; 7(1):9466. PubMed ID: 28842566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piezoelectric tantalum pentoxide studied for optical tunable applications.
    Parmentier R; Lemarchand F; Cathelinaud M; Lequime M; Amra C; Labat S; Bozzo S; Bocquet F; Charaï A; Thomas O; Dominici C
    Appl Opt; 2002 Jun; 41(16):3270-6. PubMed ID: 12064412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.