These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16539265)

  • 1. Thermal noise from optical coatings in gravitational wave detectors.
    Harry GM; Armandula H; Black E; Crooks DR; Cagnoli G; Hough J; Murray P; Reid S; Rowan S; Sneddon P; Fejer MM; Route R; Penn SD
    Appl Opt; 2006 Mar; 45(7):1569-74. PubMed ID: 16539265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of mirror coatings for gravitational-wave detectors.
    Steinlechner J
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the nature of black holes: Deep in the mHz gravitational-wave sky.
    Baibhav V; Barack L; Berti E; Bonga B; Brito R; Cardoso V; Compère G; Das S; Doneva D; Garcia-Bellido J; Heisenberg L; Hughes SA; Isi M; Jani K; Kavanagh C; Lukes-Gerakopoulos G; Mueller G; Pani P; Petiteau A; Rajendran S; Sotiriou TP; Stergioulas N; Taylor A; Vagenas E; van de Meent M; Warburton N; Wardell B; Witzany V; Zimmerman A
    Exp Astron (Dordr); 2021; 51(3):1385-1416. PubMed ID: 34720415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.
    Yunes N; Siemens X
    Living Rev Relativ; 2013; 16(1):9. PubMed ID: 28179845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Mechanical Loss TiO_{2}:GeO_{2} Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers.
    Vajente G; Yang L; Davenport A; Fazio M; Ananyeva A; Zhang L; Billingsley G; Prasai K; Markosyan A; Bassiri R; Fejer MM; Chicoine M; Schiettekatte F; Menoni CS
    Phys Rev Lett; 2021 Aug; 127(7):071101. PubMed ID: 34459624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The black hole symphony: probing new physics using gravitational waves.
    Gair JR
    Philos Trans A Math Phys Eng Sci; 2008 Dec; 366(1884):4365-79. PubMed ID: 18812300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gravitational wave astronomy: needle in a haystack.
    Cornish NJ
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1984):20110540. PubMed ID: 23277598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squeezed vacuum states of light for gravitational wave detectors.
    Barsotti L; Harms J; Schnabel R
    Rep Prog Phys; 2019 Jan; 82(1):016905. PubMed ID: 29569572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A massive binary black-hole system in OJ 287 and a test of general relativity.
    Valtonen MJ; Lehto HJ; Nilsson K; Heidt J; Takalo LO; Sillanpää A; Villforth C; Kidger M; Poyner G; Pursimo T; Zola S; Wu JH; Zhou X; Sadakane K; Drozdz M; Koziel D; Marchev D; Ogloza W; Porowski C; Siwak M; Stachowski G; Winiarski M; Hentunen VP; Nissinen M; Liakos A; Dogru S
    Nature; 2008 Apr; 452(7189):851-3. PubMed ID: 18421348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum metrology for gravitational wave astronomy.
    Schnabel R; Mavalvala N; McClelland DE; Lam PK
    Nat Commun; 2010 Nov; 1():121. PubMed ID: 21081919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LIGO and the opening of a unique observational window on the universe.
    Kalogera V; Lazzarini A
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3017-3025. PubMed ID: 28283663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mirrors used in the LIGO interferometers for first detection of gravitational waves.
    Pinard L; Michel C; Sassolas B; Balzarini L; Degallaix J; Dolique V; Flaminio R; Forest D; Granata M; Lagrange B; Straniero N; Teillon J; Cagnoli G
    Appl Opt; 2017 Feb; 56(4):C11-C15. PubMed ID: 28158044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal noise computation of arbitrary masses in optical interferometers from first principles.
    Dickmann J
    Opt Express; 2021 Oct; 29(22):36546-36558. PubMed ID: 34809063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravitational waves from neutron stars and asteroseismology.
    Ho WCG
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gravitational-wave astronomy: delivering on the promises.
    Schutz BF
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation method for light scattering caused by multilayer coated mirrors in gravitational wave detectors.
    Zeidler S; Akutsu T; Torii Y; Hirose E; Aso Y; Flaminio R
    Opt Express; 2017 Mar; 25(5):4741-4760. PubMed ID: 28380744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the birth and death of black holes and other creatures.
    Márka S
    Ann N Y Acad Sci; 2012 Jul; 1260():55-65. PubMed ID: 22548630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nd:YVO
    Thies F; Bode N; Oppermann P; Frede M; Schulz B; Willke B
    Opt Lett; 2019 Feb; 44(3):719-722. PubMed ID: 30702719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high throughput instrument to measure mechanical losses in thin film coatings.
    Vajente G; Ananyeva A; Billingsley G; Gustafson E; Heptonstall A; Sanchez E; Torrie C
    Rev Sci Instrum; 2017 Jul; 88(7):073901. PubMed ID: 28764504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large and extremely low loss: the unique challenges of gravitational wave mirrors.
    Degallaix J; Michel C; Sassolas B; Allocca A; Cagnoli G; Balzarini L; Dolique V; Flaminio R; Forest D; Granata M; Lagrange B; Straniero N; Teillon J; Pinard L
    J Opt Soc Am A Opt Image Sci Vis; 2019 Nov; 36(11):C85-C94. PubMed ID: 31873699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.