These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 16539384)
1. Assessment of in vitro and in vivo activities in the National Cancer Institute's anticancer screen with respect to chemical structure, target specificity, and mechanism of action. Huang R; Wallqvist A; Covell DG J Med Chem; 2006 Mar; 49(6):1964-79. PubMed ID: 16539384 [TBL] [Abstract][Full Text] [Related]
2. Linking pathway gene expressions to the growth inhibition response from the National Cancer Institute's anticancer screen and drug mechanism of action. Huang R; Wallqvist A; Thanki N; Covell DG Pharmacogenomics J; 2005; 5(6):381-99. PubMed ID: 16103895 [TBL] [Abstract][Full Text] [Related]
3. Web-based tools for mining the NCI databases for anticancer drug discovery. Fang X; Shao L; Zhang H; Wang S J Chem Inf Comput Sci; 2004; 44(1):249-57. PubMed ID: 14741034 [TBL] [Abstract][Full Text] [Related]
4. Predictive statistics and artificial intelligence in the U.S. National Cancer Institute's Drug Discovery Program for Cancer and AIDS. Weinstein JN; Myers T; Buolamwini J; Raghavan K; van Osdol W; Licht J; Viswanadhan VN; Kohn KW; Rubinstein LV; Koutsoukos AD Stem Cells; 1994 Jan; 12(1):13-22. PubMed ID: 8142917 [TBL] [Abstract][Full Text] [Related]
5. Identification of non-cross-resistant platinum compounds with novel cytotoxicity profiles using the NCI anticancer drug screen and clustered image map visualizations. Fojo T; Farrell N; Ortuzar W; Tanimura H; Weinstein J; Myers TG Crit Rev Oncol Hematol; 2005 Jan; 53(1):25-34. PubMed ID: 15607933 [TBL] [Abstract][Full Text] [Related]
6. Anticancer metal compounds in NCI's tumor-screening database: putative mode of action. Huang R; Wallqvist A; Covell DG Biochem Pharmacol; 2005 Apr; 69(7):1009-39. PubMed ID: 15763539 [TBL] [Abstract][Full Text] [Related]
7. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure. Keskin O; Bahar I; Jernigan RL; Beutler JA; Shoemaker RH; Sausville EA; Covell DG Anticancer Drug Des; 2000 Apr; 15(2):79-98. PubMed ID: 10901296 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and biological evaluation of 11-substituted 6-aminobenzo[c]phenanthridine derivatives, a new class of antitumor agents. Kock I; Heber D; Weide M; Wolschendorf U; Clement B J Med Chem; 2005 Apr; 48(8):2772-7. PubMed ID: 15828815 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, antitumour activity and structure-activity relationships of 5H-benzo[b]carbazoles. Asche C; Frank W; Albert A; Kucklaender U Bioorg Med Chem; 2005 Feb; 13(3):819-37. PubMed ID: 15653349 [TBL] [Abstract][Full Text] [Related]
10. Semisynthesis and in vitro anticancer activities of andrographolide analogues. Jada SR; Subur GS; Matthews C; Hamzah AS; Lajis NH; Saad MS; Stevens MF; Stanslas J Phytochemistry; 2007 Mar; 68(6):904-12. PubMed ID: 17234223 [TBL] [Abstract][Full Text] [Related]
11. Cytotoxicity of the novel glutathione-activated thiopurine prodrugs cis-AVTP [cis-6-(2-acetylvinylthio)purine] and trans-AVTG [trans-6-(2-acetylvinylthio)guanine] results from the National Cancer Institute's anticancer drug screen. Gunnarsdottir S; Elfarra AA Drug Metab Dispos; 2004 Mar; 32(3):321-7. PubMed ID: 14977866 [TBL] [Abstract][Full Text] [Related]
12. NCI's anticancer drug screening program may not be selecting for clinically active compounds. Brown JM Oncol Res; 1997; 9(5):213-5. PubMed ID: 9306428 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Adams BK; Ferstl EM; Davis MC; Herold M; Kurtkaya S; Camalier RF; Hollingshead MG; Kaur G; Sausville EA; Rickles FR; Snyder JP; Liotta DC; Shoji M Bioorg Med Chem; 2004 Jul; 12(14):3871-83. PubMed ID: 15210154 [TBL] [Abstract][Full Text] [Related]
14. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Nandi S; Vracko M; Bagchi MC Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360 [TBL] [Abstract][Full Text] [Related]
15. Evaluating chemical structure similarity as an indicator of cellular growth inhibition. Wallqvist A; Huang R; Thanki N; Covell DG J Chem Inf Model; 2006; 46(1):430-7. PubMed ID: 16426077 [TBL] [Abstract][Full Text] [Related]
16. The usefulness of cyclic diamidines with different core-substituents as antitumor agents. SpychaĆa J Bioorg Chem; 2008 Aug; 36(4):183-9. PubMed ID: 18571215 [TBL] [Abstract][Full Text] [Related]
17. Mining the National Cancer Institute's tumor-screening database: identification of compounds with similar cellular activities. Rabow AA; Shoemaker RH; Sausville EA; Covell DG J Med Chem; 2002 Feb; 45(4):818-40. PubMed ID: 11831894 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of indenoisoquinoline topoisomerase I inhibitors using a hollow fiber assay. Morrell A; Jayaraman M; Nagarajan M; Fox BM; Meckley MR; Ioanoviciu A; Pommier Y; Antony S; Hollingshead M; Cushman M Bioorg Med Chem Lett; 2006 Aug; 16(16):4395-9. PubMed ID: 16750365 [TBL] [Abstract][Full Text] [Related]
19. Linking tumor cell cytotoxicity to mechanism of drug action: an integrated analysis of gene expression, small-molecule screening and structural databases. Covell DG; Wallqvist A; Huang R; Thanki N; Rabow AA; Lu XJ Proteins; 2005 May; 59(3):403-33. PubMed ID: 15778971 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and evaluation of anticancer activity of 2-arylamino-6-trifluoromethyl-3-(hydrazonocarbonyl)pyridines. Onnis V; Cocco MT; Fadda R; Congiu C Bioorg Med Chem; 2009 Sep; 17(17):6158-65. PubMed ID: 19679483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]