BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16539384)

  • 1. Assessment of in vitro and in vivo activities in the National Cancer Institute's anticancer screen with respect to chemical structure, target specificity, and mechanism of action.
    Huang R; Wallqvist A; Covell DG
    J Med Chem; 2006 Mar; 49(6):1964-79. PubMed ID: 16539384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking pathway gene expressions to the growth inhibition response from the National Cancer Institute's anticancer screen and drug mechanism of action.
    Huang R; Wallqvist A; Thanki N; Covell DG
    Pharmacogenomics J; 2005; 5(6):381-99. PubMed ID: 16103895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Web-based tools for mining the NCI databases for anticancer drug discovery.
    Fang X; Shao L; Zhang H; Wang S
    J Chem Inf Comput Sci; 2004; 44(1):249-57. PubMed ID: 14741034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive statistics and artificial intelligence in the U.S. National Cancer Institute's Drug Discovery Program for Cancer and AIDS.
    Weinstein JN; Myers T; Buolamwini J; Raghavan K; van Osdol W; Licht J; Viswanadhan VN; Kohn KW; Rubinstein LV; Koutsoukos AD
    Stem Cells; 1994 Jan; 12(1):13-22. PubMed ID: 8142917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of non-cross-resistant platinum compounds with novel cytotoxicity profiles using the NCI anticancer drug screen and clustered image map visualizations.
    Fojo T; Farrell N; Ortuzar W; Tanimura H; Weinstein J; Myers TG
    Crit Rev Oncol Hematol; 2005 Jan; 53(1):25-34. PubMed ID: 15607933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anticancer metal compounds in NCI's tumor-screening database: putative mode of action.
    Huang R; Wallqvist A; Covell DG
    Biochem Pharmacol; 2005 Apr; 69(7):1009-39. PubMed ID: 15763539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.
    Keskin O; Bahar I; Jernigan RL; Beutler JA; Shoemaker RH; Sausville EA; Covell DG
    Anticancer Drug Des; 2000 Apr; 15(2):79-98. PubMed ID: 10901296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and biological evaluation of 11-substituted 6-aminobenzo[c]phenanthridine derivatives, a new class of antitumor agents.
    Kock I; Heber D; Weide M; Wolschendorf U; Clement B
    J Med Chem; 2005 Apr; 48(8):2772-7. PubMed ID: 15828815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, antitumour activity and structure-activity relationships of 5H-benzo[b]carbazoles.
    Asche C; Frank W; Albert A; Kucklaender U
    Bioorg Med Chem; 2005 Feb; 13(3):819-37. PubMed ID: 15653349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semisynthesis and in vitro anticancer activities of andrographolide analogues.
    Jada SR; Subur GS; Matthews C; Hamzah AS; Lajis NH; Saad MS; Stevens MF; Stanslas J
    Phytochemistry; 2007 Mar; 68(6):904-12. PubMed ID: 17234223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of the novel glutathione-activated thiopurine prodrugs cis-AVTP [cis-6-(2-acetylvinylthio)purine] and trans-AVTG [trans-6-(2-acetylvinylthio)guanine] results from the National Cancer Institute's anticancer drug screen.
    Gunnarsdottir S; Elfarra AA
    Drug Metab Dispos; 2004 Mar; 32(3):321-7. PubMed ID: 14977866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NCI's anticancer drug screening program may not be selecting for clinically active compounds.
    Brown JM
    Oncol Res; 1997; 9(5):213-5. PubMed ID: 9306428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents.
    Adams BK; Ferstl EM; Davis MC; Herold M; Kurtkaya S; Camalier RF; Hollingshead MG; Kaur G; Sausville EA; Rickles FR; Snyder JP; Liotta DC; Shoji M
    Bioorg Med Chem; 2004 Jul; 12(14):3871-83. PubMed ID: 15210154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating chemical structure similarity as an indicator of cellular growth inhibition.
    Wallqvist A; Huang R; Thanki N; Covell DG
    J Chem Inf Model; 2006; 46(1):430-7. PubMed ID: 16426077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The usefulness of cyclic diamidines with different core-substituents as antitumor agents.
    SpychaƂa J
    Bioorg Chem; 2008 Aug; 36(4):183-9. PubMed ID: 18571215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining the National Cancer Institute's tumor-screening database: identification of compounds with similar cellular activities.
    Rabow AA; Shoemaker RH; Sausville EA; Covell DG
    J Med Chem; 2002 Feb; 45(4):818-40. PubMed ID: 11831894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of indenoisoquinoline topoisomerase I inhibitors using a hollow fiber assay.
    Morrell A; Jayaraman M; Nagarajan M; Fox BM; Meckley MR; Ioanoviciu A; Pommier Y; Antony S; Hollingshead M; Cushman M
    Bioorg Med Chem Lett; 2006 Aug; 16(16):4395-9. PubMed ID: 16750365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking tumor cell cytotoxicity to mechanism of drug action: an integrated analysis of gene expression, small-molecule screening and structural databases.
    Covell DG; Wallqvist A; Huang R; Thanki N; Rabow AA; Lu XJ
    Proteins; 2005 May; 59(3):403-33. PubMed ID: 15778971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and evaluation of anticancer activity of 2-arylamino-6-trifluoromethyl-3-(hydrazonocarbonyl)pyridines.
    Onnis V; Cocco MT; Fadda R; Congiu C
    Bioorg Med Chem; 2009 Sep; 17(17):6158-65. PubMed ID: 19679483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.