BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16539533)

  • 21. Predicting protein secondary structure by a support vector machine based on a new coding scheme.
    Wang LH; Liu J; Li YF; Zhou HB
    Genome Inform; 2004; 15(2):181-90. PubMed ID: 15706504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Why neural networks should not be used for HIV-1 protease cleavage site prediction.
    Rögnvaldsson T; You L
    Bioinformatics; 2004 Jul; 20(11):1702-9. PubMed ID: 14988129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved method for predicting beta-turn using support vector machine.
    Zhang Q; Yoon S; Welsh WJ
    Bioinformatics; 2005 May; 21(10):2370-4. PubMed ID: 15797917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting secondary structures of proteins. Recognizing properties of amino acids with the logical analysis of data algorithm.
    Błazewicz J; Hammer PL; Lukasiak P
    IEEE Eng Med Biol Mag; 2005; 24(3):88-94. PubMed ID: 15971846
    [No Abstract]   [Full Text] [Related]  

  • 25. Prediction of protein structural class with Rough Sets.
    Cao Y; Liu S; Zhang L; Qin J; Wang J; Tang K
    BMC Bioinformatics; 2006 Jan; 7():20. PubMed ID: 16412240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational differentiation of N-terminal signal peptides and transmembrane helices.
    Yuan Z; Davis MJ; Zhang F; Teasdale RD
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1278-83. PubMed ID: 14652012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signal peptide discrimination and cleavage site identification using SVM and NN.
    Kazemian HB; Yusuf SA; White K
    Comput Biol Med; 2014 Feb; 45():98-110. PubMed ID: 24480169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of putative domain linkers by a neural network - application to a large sequence database.
    Miyazaki S; Kuroda Y; Yokoyama S
    BMC Bioinformatics; 2006 Jun; 7():323. PubMed ID: 16800897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting and sorting targeting peptides with neural networks and support vector machines.
    Hawkins J; Bodén M
    J Bioinform Comput Biol; 2006 Feb; 4(1):1-18. PubMed ID: 16568539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PrDOS: prediction of disordered protein regions from amino acid sequence.
    Ishida T; Kinoshita K
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W460-4. PubMed ID: 17567614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploiting multi-layered vector spaces for signal peptide detection.
    Johnsten T; Fain L; Fain L; Benton RG; Butler E; Pannell L; Tan M
    Int J Data Min Bioinform; 2015; 13(2):141-57. PubMed ID: 26547972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supervised identification of allergen-representative peptides for in silico detection of potentially allergenic proteins.
    Björklund AK; Soeria-Atmadja D; Zorzet A; Hammerling U; Gustafsson MG
    Bioinformatics; 2005 Jan; 21(1):39-50. PubMed ID: 15319257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of protein folds: extraction of new features, dimensionality reduction, and fusion of heterogeneous classifiers.
    Ghanty P; Pal NR
    IEEE Trans Nanobioscience; 2009 Mar; 8(1):100-10. PubMed ID: 19278932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting the linkage sites in glycoproteins using bio-basis function neural network.
    Yang ZR; Chou KC
    Bioinformatics; 2004 Apr; 20(6):903-8. PubMed ID: 14751965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HYPROSP II--a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence.
    Lin HN; Chang JM; Wu KP; Sung TY; Hsu WL
    Bioinformatics; 2005 Aug; 21(15):3227-33. PubMed ID: 15932901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning approaches for the prediction of signal peptides and other protein sorting signals.
    Nielsen H; Brunak S; von Heijne G
    Protein Eng; 1999 Jan; 12(1):3-9. PubMed ID: 10065704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting protein structure classes from function predictions.
    Sommer I; Rahnenführer J; Domingues FS; de Lichtenberg U; Lengauer T
    Bioinformatics; 2004 Mar; 20(5):770-6. PubMed ID: 14751994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Support vector machines with profile-based kernels for remote protein homology detection.
    Busuttil S; Abela J; Pace GJ
    Genome Inform; 2004; 15(2):191-200. PubMed ID: 15706505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.