BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 16540102)

  • 1. Assembly of spermatid acrosome depends on microtubule organization during mammalian spermiogenesis.
    Moreno RD; Palomino J; Schatten G
    Dev Biol; 2006 May; 293(1):218-27. PubMed ID: 16540102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Golgi apparatus segregates from the lysosomal/acrosomal vesicle during rhesus spermiogenesis: structural alterations.
    Moreno RD; Ramalho-Santos J; Chan EK; Wessel GM; Schatten G
    Dev Biol; 2000 Mar; 219(2):334-49. PubMed ID: 10694426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome-acroplaxome complex, head-tail coupling apparatus and tail.
    Kierszenbaum AL; Rivkin E; Tres LL; Yoder BK; Haycraft CJ; Bornens M; Rios RM
    Dev Dyn; 2011 Mar; 240(3):723-36. PubMed ID: 21337470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule configurations and post-translational alpha-tubulin modifications during mammalian spermatogenesis.
    Moreno RD; Schatten G
    Cell Motil Cytoskeleton; 2000 Aug; 46(4):235-46. PubMed ID: 10962478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane trafficking machinery components associated with the mammalian acrosome during spermiogenesis.
    Ramalho-Santos J; Moreno RD; Wessel GM; Chan EK; Schatten G
    Exp Cell Res; 2001 Jul; 267(1):45-60. PubMed ID: 11412037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting and fusion proteins during mammalian spermiogenesis.
    Ramalho-Santos J; Moreno RD
    Biol Res; 2001; 34(2):147-52. PubMed ID: 11715208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of microtubule-dependent membrane trafficking in acrosomal biogenesis.
    Huang WP; Ho HC
    Cell Tissue Res; 2006 Mar; 323(3):495-503. PubMed ID: 16341711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesicular traffic and golgi apparatus dynamics during mammalian spermatogenesis: implications for acrosome architecture.
    Moreno RD; Ramalho-Santos J; Sutovsky P; Chan EK; Schatten G
    Biol Reprod; 2000 Jul; 63(1):89-98. PubMed ID: 10859246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMF/ARA160 Governs the Dynamic Spatial Orientation of the Golgi Apparatus during Sperm Development.
    Elkis Y; Bel S; Rahimi R; Lerer-Goldstein T; Levin-Zaidman S; Babushkin T; Shpungin S; Nir U
    PLoS One; 2015; 10(12):e0145277. PubMed ID: 26701263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization and modifications of sperm acrosomal molecules during spermatogenesis and epididymal maturation.
    Yoshinaga K; Toshimori K
    Microsc Res Tech; 2003 May; 61(1):39-45. PubMed ID: 12672121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusion failure of dense-cored proacrosomal vesicles in an inducible mouse model of male infertility.
    Oko R; Donald A; Xu W; van der Spoel AC
    Cell Tissue Res; 2011 Oct; 346(1):119-34. PubMed ID: 21987219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. USP8/UBPy-regulated sorting and the development of sperm acrosome: the recruitment of MET.
    Berruti G; Paiardi C
    Reproduction; 2015 Jun; 149(6):633-44. PubMed ID: 25744385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport.
    Yang WX; Sperry AO
    Biol Reprod; 2003 Nov; 69(5):1719-29. PubMed ID: 12826589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal manchette development in spermatids of azh/azh mutant mice.
    Meistrich ML; Trostle-Weige PK; Russell LD
    Am J Anat; 1990 May; 188(1):74-86. PubMed ID: 2346121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deficiency in the omega-3 fatty acid pathway results in failure of acrosome biogenesis in mice.
    Roqueta-Rivera M; Abbott TL; Sivaguru M; Hess RA; Nakamura MT
    Biol Reprod; 2011 Oct; 85(4):721-32. PubMed ID: 21653892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and rearrangement of the intra-acrosomal protein acrin1 (MN7) during spermiogenesis in the guinea pig testis.
    Yoshinaga K; Tanii I; Oh-Oka T; Toshimori K
    Anat Rec; 2000 Jun; 259(2):131-40. PubMed ID: 10820315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of lysosomal associated membrane protein (LAMP-1) during mammalian spermiogenesis.
    Moreno RD
    Mol Reprod Dev; 2003 Oct; 66(2):202-9. PubMed ID: 12950108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vps13b is required for acrosome biogenesis through functions in Golgi dynamic and membrane trafficking.
    Da Costa R; Bordessoules M; Guilleman M; Carmignac V; Lhussiez V; Courot H; Bataille A; Chlémaire A; Bruno C; Fauque P; Thauvin C; Faivre L; Duplomb L
    Cell Mol Life Sci; 2020 Feb; 77(3):511-529. PubMed ID: 31218450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertional mutation that causes acrosomal hypo-development: its relationship to sperm head shaping.
    Russell LD; Ying L; Overbeek PA
    Anat Rec; 1994 Apr; 238(4):437-53. PubMed ID: 8192241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brefeldin A and mannose 6-phosphate regulation of acrosomic related vesicular trafficking.
    West AP; Willison KR
    Eur J Cell Biol; 1996 Aug; 70(4):315-21. PubMed ID: 8864659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.