These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16540129)

  • 21. Network structure, and vaccination strategy and effort interact to affect the dynamics of influenza epidemics.
    Hartvigsen G; Dresch JM; Zielinski AL; Macula AJ; Leary CC
    J Theor Biol; 2007 May; 246(2):205-13. PubMed ID: 17303174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bifurcations of an epidemic model with non-linear incidence and infection-dependent removal rate.
    Moghadas SM; Alexander ME
    Math Med Biol; 2006 Sep; 23(3):231-54. PubMed ID: 16648145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Network epidemic models with two levels of mixing.
    Ball F; Neal P
    Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new explanatory model of an SIR disease epidemic: a knowledge-based, probabilistic approach to epidemic analysis.
    Sayers BM; Angulo J
    Scand J Infect Dis; 2005; 37(1):55-60. PubMed ID: 15764191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling the effect of urbanization on the transmission of an infectious disease.
    Zhang P; Atkinson PM
    Math Biosci; 2008 Jan; 211(1):166-85. PubMed ID: 18068198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model for influenza with vaccination and antiviral treatment.
    Arino J; Brauer F; van den Driessche P; Watmough J; Wu J
    J Theor Biol; 2008 Jul; 253(1):118-30. PubMed ID: 18402981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-linear incidence and stability of infectious disease models.
    Korobeinikov A; Maini PK
    Math Med Biol; 2005 Jun; 22(2):113-28. PubMed ID: 15778334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Persistence and dynamics in lattice models of epidemic spread.
    Rhodes CJ; Anderson RM
    J Theor Biol; 1996 May; 180(2):125-33. PubMed ID: 8763363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Host spatial heterogeneity and extinction of an SIS epidemic.
    Caraco T; Duryea M; Gardner G; Maniatty W; Szymanski BK
    J Theor Biol; 1998 Jun; 192(3):351-61. PubMed ID: 9650291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measles surveillance in five major US cities: Chicago, Houston, Los Angeles, Miami, and New York.
    Kolasa M; Alexopoulos N; Diaz P; Kellachan J; Lowrey MJ; Shelton B; Harpaz R; Papania MJ
    J Infect Dis; 2004 May; 189 Suppl 1():S216-21. PubMed ID: 15106114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Networks, epidemics and vaccination through contact tracing.
    Shaban N; Andersson M; Svensson A; Britton T
    Math Biosci; 2008 Nov; 216(1):1-8. PubMed ID: 18638493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Household epidemics: modelling effects of early stage vaccination.
    Shaban N; Andersson M; Svensson A; Britton T
    Biom J; 2009 Jun; 51(3):408-19. PubMed ID: 19548285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viral kinetics and exhaled droplet size affect indoor transmission dynamics of influenza infection.
    Chen SC; Chio CP; Jou LJ; Liao CM
    Indoor Air; 2009 Oct; 19(5):401-13. PubMed ID: 19659895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the simple epidemic with deterministic differential equations and random initial conditions.
    Kegan B; West RW
    Math Biosci; 2005 Apr; 194(2):217-31. PubMed ID: 15854677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the simple epidemic with deterministic differential equations and random initial conditions.
    Kegan B; West RW
    Math Biosci; 2005 Jun; 195(2):179-93. PubMed ID: 15907949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
    Lekone PE; Finkenstädt BF
    Biometrics; 2006 Dec; 62(4):1170-7. PubMed ID: 17156292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epidemiological effects of seasonal oscillations in birth rates.
    He D; Earn DJ
    Theor Popul Biol; 2007 Sep; 72(2):274-91. PubMed ID: 17588629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bimodal epidemic size distributions for near-critical SIR with vaccination.
    Gordillo LF; Marion SA; Martin-Löf A; Greenwood PE
    Bull Math Biol; 2008 Feb; 70(2):589-602. PubMed ID: 17992563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global stability of an SIR epidemic model with information dependent vaccination.
    Buonomo B; D'Onofrio A; Lacitignola D
    Math Biosci; 2008 Nov; 216(1):9-16. PubMed ID: 18725233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.