BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16540182)

  • 1. Evaluation of synthetic oligonucleotides as inhibitors of West Nile virus replication.
    Torrence PF; Gupta N; Whitney C; Morrey JD
    Antiviral Res; 2006 Jun; 70(2):60-5. PubMed ID: 16540182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA elements within the 5' untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication.
    Li XF; Jiang T; Yu XD; Deng YQ; Zhao H; Zhu QY; Qin ED; Qin CF
    J Gen Virol; 2010 May; 91(Pt 5):1218-23. PubMed ID: 20016034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Error-prone replication of West Nile virus caused by ribavirin.
    Day CW; Smee DF; Julander JG; Yamshchikov VF; Sidwell RW; Morrey JD
    Antiviral Res; 2005 Jul; 67(1):38-45. PubMed ID: 15919121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective siRNA targeting of the 3' untranslated region of the West Nile virus genome.
    Anthony KG; Bai F; Krishnan MN; Fikrig E; Koski RA
    Antiviral Res; 2009 Jun; 82(3):166-8. PubMed ID: 19135091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of small RNAs containing the 5'- and the 3'-end sequences of viral genome during West Nile virus replication.
    Maeda A; Maeda J; Takagi H; Kurane I
    Virology; 2008 Feb; 371(1):130-8. PubMed ID: 17963811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of West Nile virus replication in cells stably transfected with vector-based shRNA expression system.
    Ong SP; Chu JJ; Ng ML
    Virus Res; 2008 Aug; 135(2):292-7. PubMed ID: 18514349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. West Nile virus genome cyclization and RNA replication require two pairs of long-distance RNA interactions.
    Zhang B; Dong H; Stein DA; Iversen PL; Shi PY
    Virology; 2008 Mar; 373(1):1-13. PubMed ID: 18258275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of RNA interference to prevent lethal murine west nile virus infection.
    Bai F; Wang T; Pal U; Bao F; Gould LH; Fikrig E
    J Infect Dis; 2005 Apr; 191(7):1148-54. PubMed ID: 15747251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of vector-based small interfering RNA against West Nile virus effectively inhibits virus replication.
    Ong SP; Choo BG; Chu JJ; Ng ML
    Antiviral Res; 2006 Dec; 72(3):216-23. PubMed ID: 16870272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of West Nile virus replicons to cells in culture and use of replicon-bearing cells to probe antiviral action.
    Rossi SL; Zhao Q; O'Donnell VK; Mason PW
    Virology; 2005 Jan; 331(2):457-70. PubMed ID: 15629788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of compounds with anti-West Nile Virus activity.
    Goodell JR; Puig-Basagoiti F; Forshey BM; Shi PY; Ferguson DM
    J Med Chem; 2006 Mar; 49(6):2127-37. PubMed ID: 16539402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The flavivirus-conserved penta-nucleotide in the 3' stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation.
    Tilgner M; Deas TS; Shi PY
    Virology; 2005 Jan; 331(2):375-86. PubMed ID: 15629780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of self-replicating subgenomic West Nile virus replicons for screening antiviral compounds.
    Alcaraz-Estrada SL; Reichert ED; Padmanabhan R
    Methods Mol Biol; 2013; 1030():283-99. PubMed ID: 23821276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of West Nile virus containing a complete 3'CSI RNA deletion.
    Zhang B; Dong H; Ye H; Tilgner M; Shi PY
    Virology; 2010 Dec; 408(2):138-45. PubMed ID: 20965539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the region influencing the cis-mode of maturation of West Nile (Sarafend) virus using chimeric infectious clones.
    Li J; Bhuvanakantham R; Howe J; Ng ML
    Biochem Biophys Res Commun; 2005 Aug; 334(2):714-20. PubMed ID: 16018972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of replicative capacity and genetic stability of West Nile virus replicons using highly efficient packaging cell lines.
    Fayzulin R; Scholle F; Petrakova O; Frolov I; Mason PW
    Virology; 2006 Jul; 351(1):196-209. PubMed ID: 16647099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for the identification of inhibitors of West Nile virus and other flaviviruses.
    Shi PY
    Curr Opin Investig Drugs; 2002 Nov; 3(11):1567-73. PubMed ID: 12476954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The majority of the nucleotides in the top loop of the genomic 3' terminal stem loop structure are cis-acting in a West Nile virus infectious clone.
    Elghonemy S; Davis WG; Brinton MA
    Virology; 2005 Jan; 331(2):238-46. PubMed ID: 15629768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. West Nile virus is neutralized by HOCl-modified human serum albumin that binds to domain III of the viral envelope protein E.
    Vossmann M; Kirst M; Ludolfs D; Schreiber M
    Virology; 2008 Apr; 373(2):322-8. PubMed ID: 18191981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial inhibition of yellow fever virus replication in vitro with different phosphorothioate oligodeoxyribonucleotides.
    Tolou H; Puggelli H; Tock F; Durand JP
    Acta Virol; 1996 Apr; 40(2):73-9. PubMed ID: 8886115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.