These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 16540231)
1. Continuous assay of protein tyrosine phosphatases based on fluorescence resonance energy transfer. Nishikata M; Yoshimura Y; Deyama Y; Suzuki K Biochimie; 2006 Jul; 88(7):879-86. PubMed ID: 16540231 [TBL] [Abstract][Full Text] [Related]
2. A phosphotyrosine-containing quenched fluorogenic peptide as a novel substrate for protein tyrosine phosphatases. Nishikata M; Suzuki K; Yoshimura Y; Deyama Y; Matsumoto A Biochem J; 1999 Oct; 343 Pt 2(Pt 2):385-91. PubMed ID: 10510304 [TBL] [Abstract][Full Text] [Related]
3. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral. Takakusa H; Kikuchi K; Urano Y; Kojima H; Nagano T Chemistry; 2003 Apr; 9(7):1479-85. PubMed ID: 12658644 [TBL] [Abstract][Full Text] [Related]
4. A continuous fluorescence resonance energy transfer angiotensin I-converting enzyme assay. Carmona AK; Schwager SL; Juliano MA; Juliano L; Sturrock ED Nat Protoc; 2006; 1(4):1971-6. PubMed ID: 17487185 [TBL] [Abstract][Full Text] [Related]
5. 6,8-Difluoro-4-methylumbiliferyl phosphate: a fluorogenic substrate for protein tyrosine phosphatases. Welte S; Baringhaus KH; Schmider W; Müller G; Petry S; Tennagels N Anal Biochem; 2005 Mar; 338(1):32-8. PubMed ID: 15707933 [TBL] [Abstract][Full Text] [Related]
6. Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases: Isolation of substrates for protein tyrosine phosphatase receptor type z. Fukada M; Kawachi H; Fujikawa A; Noda M Methods; 2005 Jan; 35(1):54-63. PubMed ID: 15588986 [TBL] [Abstract][Full Text] [Related]
7. Time-resolved fluorescence resonance energy transfer kinase assays using physiological protein substrates: applications of terbium-fluorescein and terbium-green fluorescent protein fluorescence resonance energy transfer pairs. Riddle SM; Vedvik KL; Hanson GT; Vogel KW Anal Biochem; 2006 Sep; 356(1):108-16. PubMed ID: 16797477 [TBL] [Abstract][Full Text] [Related]
8. A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptides. Takiyama K; Kinoshita E; Kinoshita-Kikuta E; Fujioka Y; Kubo Y; Koike T Anal Biochem; 2009 May; 388(2):235-41. PubMed ID: 19281791 [TBL] [Abstract][Full Text] [Related]
9. Determination of angiotensin I-converting enzyme activity in cell culture using fluorescence resonance energy transfer peptides. Sabatini RA; Bersanetti PA; Farias SL; Juliano L; Juliano MA; Casarini DE; Carmona AK; Paiva AC; Pesquero JB Anal Biochem; 2007 Apr; 363(2):255-62. PubMed ID: 17320031 [TBL] [Abstract][Full Text] [Related]
10. An enzyme-linked immunosorbent assay to measure insulin receptor dephosphorylation by PTP1B. Zhang YL; Tam M; Kirincich S; Wan ZK; Wilson D; Wu JJ; Lee J; Tobin JF; Erbe DV Anal Biochem; 2007 Jun; 365(2):174-84. PubMed ID: 17481567 [TBL] [Abstract][Full Text] [Related]
11. Neprilysin carboxydipeptidase specificity studies and improvement in its detection with fluorescence energy transfer peptides. Barros NM; Campos M; Bersanetti PA; Oliveira V; Juliano MA; Boileau G; Juliano L; Carmona AK Biol Chem; 2007 Apr; 388(4):447-55. PubMed ID: 17391066 [TBL] [Abstract][Full Text] [Related]
12. A one-step method to identify MAP kinase residues involved in inactivation by tyrosine- and dual-specificity protein phosphatases. Tárrega C; Pulido R Anal Biochem; 2009 Nov; 394(1):81-6. PubMed ID: 19583964 [TBL] [Abstract][Full Text] [Related]
13. An in vitro FRET-based assay for the analysis of SUMO conjugation and isopeptidase cleavage. Stankovic-Valentin N; Kozaczkiewicz L; Curth K; Melchior F Methods Mol Biol; 2009; 497():241-51. PubMed ID: 19107422 [TBL] [Abstract][Full Text] [Related]
14. Multiple sized europium(III) chelate-dyed polystyrene particles as donors in FRET - an application for sensitive protein quantification utilizing competitive adsorption. Valanne A; Suojanen J; Peltonen J; Soukka T; Hänninen P; Härmä H Analyst; 2009 May; 134(5):980-6. PubMed ID: 19381394 [TBL] [Abstract][Full Text] [Related]
15. Enzyme assays by fluorescence polarization in the presence of polyarginine: study of kinase, phosphatase, and protease reactions. Simeonov A; Bi X; Nikiforov TT Anal Biochem; 2002 May; 304(2):193-9. PubMed ID: 12009695 [TBL] [Abstract][Full Text] [Related]
16. A flow injection kinase assay system based on time-resolved fluorescence resonance energy-transfer detection in the millisecond range. Hirata J; de Jong CF; van Dongen MM; Buijs J; Ariese F; Irth H; Gooijer C Anal Chem; 2004 Aug; 76(15):4292-8. PubMed ID: 15283563 [TBL] [Abstract][Full Text] [Related]
17. FRET-based direct and continuous monitoring of human fucosyltransferases activity: an efficient synthesis of versatile GDP-L-fucose derivatives from abundant D-galactose. Maeda T; Nishimura S Chemistry; 2008; 14(2):478-87. PubMed ID: 17929334 [TBL] [Abstract][Full Text] [Related]
18. The SPOT technique as a tool for studying protein tyrosine phosphatase substrate specificities. Espanel X; Huguenin-Reggiani M; Hooft van Huijsduijnen R Protein Sci; 2002 Oct; 11(10):2326-34. PubMed ID: 12237455 [TBL] [Abstract][Full Text] [Related]
19. A dual-step fluorescence resonance energy transfer-based quenching assay for screening of caspase-3 inhibitors. Valanne A; Malmi P; Appelblom H; Niemelä P; Soukka T Anal Biochem; 2008 Apr; 375(1):71-81. PubMed ID: 18211811 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence resonance energy transfer (FRET) as a high-throughput assay for coupling reactions. Arylation of amines as a case study. Stauffer SR; Hartwig JF J Am Chem Soc; 2003 Jun; 125(23):6977-85. PubMed ID: 12783551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]