These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16540708)

  • 1. Translating accelerometer counts into energy expenditure: advancing the quest.
    Troiano RP
    J Appl Physiol (1985); 2006 Apr; 100(4):1107-8. PubMed ID: 16540708
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel method for using accelerometer data to predict energy expenditure.
    Crouter SE; Clowers KG; Bassett DR
    J Appl Physiol (1985); 2006 Apr; 100(4):1324-31. PubMed ID: 16322367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portable accelerometer device for measuring human energy expenditure.
    Wong TC; Webster JG; Montoye HJ; Washburn R
    IEEE Trans Biomed Eng; 1981 Jun; 28(6):467-71. PubMed ID: 7287045
    [No Abstract]   [Full Text] [Related]  

  • 4. [Measuring system of power output of wheelchair locomotion].
    Fujiie K
    Ann Physiol Anthropol; 1985 Jul; 4(3):253-6. PubMed ID: 4091900
    [No Abstract]   [Full Text] [Related]  

  • 5. A new 2-regression model for the Actical accelerometer.
    Crouter SE; Bassett DR
    Br J Sports Med; 2008 Mar; 42(3):217-24. PubMed ID: 17761786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical activity assessment: comparison between movement registration and doubly labeled water method.
    Westerterp KR; Bouten CV
    Z Ernahrungswiss; 1997 Dec; 36(4):263-7. PubMed ID: 9467213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of energy expenditure by recording heart rate and body acceleration.
    Meijer GA; Westerterp KR; Koper H; ten Hoor F
    Med Sci Sports Exerc; 1989 Jun; 21(3):343-7. PubMed ID: 2733585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditure.
    Foster RC; Lanningham-Foster LM; Manohar C; McCrady SK; Nysse LJ; Kaufman KR; Padgett DJ; Levine JA
    Prev Med; 2005; 41(3-4):778-83. PubMed ID: 16125760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining accelerometer thresholds for activity intensities in adolescent girls.
    Treuth MS; Schmitz K; Catellier DJ; McMurray RG; Murray DM; Almeida MJ; Going S; Norman JE; Pate R
    Med Sci Sports Exerc; 2004 Jul; 36(7):1259-66. PubMed ID: 15235335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multisensor data fusion for physical activity assessment.
    Liu S; Gao RX; John D; Staudenmayer JW; Freedson PS
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):687-96. PubMed ID: 22156943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating energy expenditure using accelerometers.
    Crouter SE; Churilla JR; Bassett DR
    Eur J Appl Physiol; 2006 Dec; 98(6):601-12. PubMed ID: 17058102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ability of the Caltrac accelerometer to assess daily physical activity levels.
    Richardson MT; Leon AS; Jacobs DR; Ainsworth BE; Serfass R
    J Cardiopulm Rehabil; 1995; 15(2):107-13. PubMed ID: 8542513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The validity of a portable accelerometer for estimating energy expenditure in bicycle riding.
    Hunter GR; Montoye HJ; Webster JG; Demment R; Ji LL; Ng A
    J Sports Med Phys Fitness; 1989 Sep; 29(3):218-22. PubMed ID: 2635251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer.
    Bonomi AG; Plasqui G; Goris AH; Westerterp KR
    J Appl Physiol (1985); 2009 Sep; 107(3):655-61. PubMed ID: 19556460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body weight-normalized Energy Expenditure estimation using combined activity and allometric scaling clustering.
    Altini M; Penders J; Amft O
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6752-5. PubMed ID: 24111293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of energy expenditure during activities of daily living by a wearable set of inertial sensors.
    Hedegaard M; Anvari-Moghaddam A; Jensen BK; Jensen CB; Pedersen MK; Samani A
    Med Eng Phys; 2020 Jan; 75():13-22. PubMed ID: 31679905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classifying household and locomotive activities using a triaxial accelerometer.
    Oshima Y; Kawaguchi K; Tanaka S; Ohkawara K; Hikihara Y; Ishikawa-Takata K; Tabata I
    Gait Posture; 2010 Mar; 31(3):370-4. PubMed ID: 20138524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body metabolism provides a foundation for noninvasive blood glucose monitoring.
    Ko JB; Cho OK; Kim YO; Yasuda K
    Diabetes Care; 2004 May; 27(5):1211-2. PubMed ID: 15111550
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.