BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 1654128)

  • 1. Okadaic acid suppresses calcium regulation of mitosis onset in sea urchin embryos.
    Patel R; Whitaker M
    Cell Regul; 1991 May; 2(5):391-402. PubMed ID: 1654128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoprotein phosphatase 1 (PP1) is a component of the isolated sea urchin mitotic apparatus.
    Johnston JA; Sloboda RD; Silver RB
    Cell Motil Cytoskeleton; 1994; 29(3):280-90. PubMed ID: 7895292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local perinuclear calcium signals associated with mitosis-entry in early sea urchin embryos.
    Wilding M; Wright EM; Patel R; Ellis-Davies G; Whitaker M
    J Cell Biol; 1996 Oct; 135(1):191-9. PubMed ID: 8858173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging.
    Sammak PJ; Adams SR; Harootunian AT; Schliwa M; Tsien RY
    J Cell Biol; 1992 Apr; 117(1):57-72. PubMed ID: 1348251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: evidence from the effects of okadaic acid.
    Félix MA; Cohen P; Karsenti E
    EMBO J; 1990 Mar; 9(3):675-83. PubMed ID: 2155777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitors of protein phosphatases (okadaic acid and tautomycin) block sea urchin development.
    Troll W; Sueoka N; Sueoka E; Laskin JD; Heck DE
    Biol Bull; 1995; 189(2):201. PubMed ID: 8541399
    [No Abstract]   [Full Text] [Related]  

  • 7. Okadaic acid uncouples calcium entry from depletion of intracellular stores.
    Berlin RD; Preston SF
    Cell Calcium; 1993 May; 14(5):379-86. PubMed ID: 8390920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Okadaic acid inhibits a protein phosphatase activity involved in formation of the mitotic spindle of GH4 rat pituitary cells.
    Van Dolah FM; Ramsdell JS
    J Cell Physiol; 1992 Jul; 152(1):190-8. PubMed ID: 1320037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of myeloid leukemic cells with the phosphatase inhibitor okadaic acid induces cell cycle arrest at either G1/S or G2/M depending on dose.
    Ishida Y; Furukawa Y; Decaprio JA; Saito M; Griffin JD
    J Cell Physiol; 1992 Mar; 150(3):484-92. PubMed ID: 1311329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of protein phosphatase 2A as the major tyrosine hydroxylase phosphatase in adrenal medulla and corpus striatum: evidence from the effects of okadaic acid.
    Haavik J; Schelling DL; Campbell DG; Andersson KK; Flatmark T; Cohen P
    FEBS Lett; 1989 Jul; 251(1-2):36-42. PubMed ID: 2568951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase-dependent effects of okadaic acid on hepatocytic autophagy and cytoskeletal integrity.
    Holen I; Gordon PB; Seglen PO
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):633-6. PubMed ID: 1320371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of mitosis by okadaic acid: possible involvement of a protein phosphatase 2A in the transition from metaphase to anaphase.
    Vandré DD; Wills VL
    J Cell Sci; 1992 Jan; 101 ( Pt 1)():79-91. PubMed ID: 1314839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking mitotic Golgi disassembly using okadaic acid.
    Lucocq J
    J Cell Sci; 1992 Dec; 103 ( Pt 4)():875-80. PubMed ID: 1336779
    [No Abstract]   [Full Text] [Related]  

  • 14. Caffeine overrides the S-phase cell cycle block in sea urchin embryos.
    Patel R; Wright EM; Whitaker M
    Zygote; 1997 May; 5(2):127-38. PubMed ID: 9276510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible phosphorylation as a controlling factor for sustaining calcium oscillations in HeLa cells: Involvement of calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase.
    Zhu DM; Tekle E; Chock PB; Huang CY
    Biochemistry; 1996 Jun; 35(22):7214-23. PubMed ID: 8679550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitotic arrest and enhanced nuclear protein phosphorylation in human leukemia K562 cells by okadaic acid, a potent protein phosphatase inhibitor and tumor promoter.
    Zheng B; Woo CF; Kuo JF
    J Biol Chem; 1991 Jun; 266(16):10031-4. PubMed ID: 1645333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differing effects of the protein phosphatase inhibitors okadaic acid and microcystin on translation in reticulocyte lysates.
    Redpath NT; Proud CG
    Biochim Biophys Acta; 1991 Jun; 1093(1):36-41. PubMed ID: 1646647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein tyrosine phosphorylation during sea urchin fertilization: microtubule dynamics require tyrosine kinase activity.
    Wright SJ; Schatten G
    Cell Motil Cytoskeleton; 1995; 30(2):122-35. PubMed ID: 7606805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of human sperm motility and hyperactivation components by calcium, calmodulin, and protein phosphatases.
    Ahmad K; Bracho GE; Wolf DP; Tash JS
    Arch Androl; 1995; 35(3):187-208. PubMed ID: 8585774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure of centromere separation leads to formation of diplochromosomes in next mitosis in okadaic acid treated HeLa cells.
    Ghosh S; Paweletz N; Schroeter D
    Cell Biol Int; 1993 Oct; 17(10):949-52. PubMed ID: 8287025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.