BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16541420)

  • 1. Differential regulation of IGFBP-3 by the androgen receptor in the lineage-related androgen-dependent LNCaP and androgen-independent C4-2 prostate cancer models.
    Kojima S; Mulholland DJ; Ettinger S; Fazli L; Nelson CC; Gleave ME
    Prostate; 2006 Jun; 66(9):971-86. PubMed ID: 16541420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP tumors.
    Kiyama S; Morrison K; Zellweger T; Akbari M; Cox M; Yu D; Miyake H; Gleave ME
    Cancer Res; 2003 Jul; 63(13):3575-84. PubMed ID: 12839944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR).
    Nickerson T; Chang F; Lorimer D; Smeekens SP; Sawyers CL; Pollak M
    Cancer Res; 2001 Aug; 61(16):6276-80. PubMed ID: 11507082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model.
    Krueckl SL; Sikes RA; Edlund NM; Bell RH; Hurtado-Coll A; Fazli L; Gleave ME; Cox ME
    Cancer Res; 2004 Dec; 64(23):8620-9. PubMed ID: 15574769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models.
    Miyake H; Pollak M; Gleave ME
    Cancer Res; 2000 Jun; 60(11):3058-64. PubMed ID: 10850457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of insulin-like growth factor binding proteins in 1alpha,25-dihydroxyvitamin D(3)-induced growth inhibition of human prostate cancer cells.
    Stewart LV; Weigel NL
    Prostate; 2005 Jun; 64(1):9-19. PubMed ID: 15651061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells.
    Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A
    Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GREB1 is a novel androgen-regulated gene required for prostate cancer growth.
    Rae JM; Johnson MD; Cordero KE; Scheys JO; Larios JM; Gottardis MM; Pienta KJ; Lippman ME
    Prostate; 2006 Jun; 66(8):886-94. PubMed ID: 16496412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative effects of DHEA vs. testosterone, dihydrotestosterone, and estradiol on proliferation and gene expression in human LNCaP prostate cancer cells.
    Arnold JT; Le H; McFann KK; Blackman MR
    Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E573-84. PubMed ID: 15536203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormonal regulation of IGFBP-2 proteolysis is attenuated with progression to androgen insensitivity in the LNCaP progression model.
    Degraff DJ; Malik M; Chen Q; Miyako K; Rejto L; Aguiar AA; Bancroft DR; Cohen P; Sikes RA
    J Cell Physiol; 2007 Oct; 213(1):261-8. PubMed ID: 17492783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer.
    Ramberg H; Eide T; Krobert KA; Levy FO; Dizeyi N; Bjartell AS; Abrahamsson PA; Taskén KA
    Prostate; 2008 Jul; 68(10):1133-42. PubMed ID: 18454446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation.
    Kikugawa T; Kinugasa Y; Shiraishi K; Nanba D; Nakashiro K; Tanji N; Yokoyama M; Higashiyama S
    Prostate; 2006 Jul; 66(10):1092-9. PubMed ID: 16637071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression in the LNCaP human prostate cancer progression model: progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo.
    Chen Q; Watson JT; Marengo SR; Decker KS; Coleman I; Nelson PS; Sikes RA
    Cancer Lett; 2006 Dec; 244(2):274-88. PubMed ID: 16500022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal analysis of androgen deprivation of prostate cancer cells identifies pathways to androgen independence.
    D'Antonio JM; Ma C; Monzon FA; Pflug BR
    Prostate; 2008 May; 68(7):698-714. PubMed ID: 18302219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rap2 regulates androgen sensitivity in human prostate cancer cells.
    Bigler D; Gioeli D; Conaway MR; Weber MJ; Theodorescu D
    Prostate; 2007 Oct; 67(14):1590-9. PubMed ID: 17918750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Up-regulation of Bcl-2 is required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage.
    Lin Y; Fukuchi J; Hiipakka RA; Kokontis JM; Xiang J
    Cell Res; 2007 Jun; 17(6):531-6. PubMed ID: 17404601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expressional changes after histone deacetylase inhibition by valproic acid in LNCaP human prostate cancer cells.
    Thelen P; Schweyer S; Hemmerlein B; Wuttke W; Seseke F; Ringert RH
    Int J Oncol; 2004 Jan; 24(1):25-31. PubMed ID: 14654937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression.
    Agoulnik IU; Vaid A; Bingman WE; Erdeme H; Frolov A; Smith CL; Ayala G; Ittmann MM; Weigel NL
    Cancer Res; 2005 Sep; 65(17):7959-67. PubMed ID: 16140968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of vitamin D-regulated gene expression in LNCaP human prostate cancer cells using cDNA microarrays.
    Krishnan AV; Shinghal R; Raghavachari N; Brooks JD; Peehl DM; Feldman D
    Prostate; 2004 May; 59(3):243-51. PubMed ID: 15042599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. YB-1 is upregulated during prostate cancer tumor progression and increases P-glycoprotein activity.
    Giménez-Bonafé P; Fedoruk MN; Whitmore TG; Akbari M; Ralph JL; Ettinger S; Gleave ME; Nelson CC
    Prostate; 2004 May; 59(3):337-49. PubMed ID: 15042610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.