These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 16541427)
1. New model potentials for sulfur-copper(I) and sulfur-mercury(II) interactions in proteins: from ab initio to molecular dynamics. Fuchs JF; Nedev H; Poger D; Ferrand M; Brenner V; Dognon JP; Crouzy S J Comput Chem; 2006 May; 27(7):837-56. PubMed ID: 16541427 [TBL] [Abstract][Full Text] [Related]
2. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. Patel S; Mackerell AD; Brooks CL J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394 [TBL] [Abstract][Full Text] [Related]
3. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
4. Development of a multipoint model for sulfur in proteins: a new parametrization scheme to reproduce high-level ab initio interaction energies. Wennmohs F; Schindler M J Comput Chem; 2005 Feb; 26(3):283-93. PubMed ID: 15614798 [TBL] [Abstract][Full Text] [Related]
5. Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions. Sakharov DV; Lim C J Comput Chem; 2009 Jan; 30(2):191-202. PubMed ID: 18566982 [TBL] [Abstract][Full Text] [Related]
6. Ligand-to-metal charge-transfer dynamics in a blue copper protein plastocyanin: a molecular dynamics study. Ando K J Phys Chem B; 2008 Jan; 112(2):250-6. PubMed ID: 18047310 [TBL] [Abstract][Full Text] [Related]
7. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations. Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003 [TBL] [Abstract][Full Text] [Related]
8. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics. Koca J; Zhan CG; Rittenhouse RC; Ornstein RL J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728 [TBL] [Abstract][Full Text] [Related]
9. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. Patel SA; Brooks CL J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics study of the beta amyloid peptide of Alzheimer's disease and its divalent copper complexes. Raffa DF; Rauk A J Phys Chem B; 2007 Apr; 111(14):3789-99. PubMed ID: 17388547 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of Cu(II) and the PHGGGWGQ octapeptide. Riihimäki ES; Martínez JM; Kloo L J Phys Chem B; 2007 Sep; 111(35):10529-37. PubMed ID: 17696524 [TBL] [Abstract][Full Text] [Related]
12. Ab initio protein structure prediction with force field parameters derived from water-phase quantum chemical calculation. Katagiri D; Fuji H; Neya S; Hoshino T J Comput Chem; 2008 Sep; 29(12):1930-44. PubMed ID: 18366016 [TBL] [Abstract][Full Text] [Related]
13. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. Izvekov S; Parrinello M; Burnham CJ; Voth GA J Chem Phys; 2004 Jun; 120(23):10896-913. PubMed ID: 15268120 [TBL] [Abstract][Full Text] [Related]
14. Modelling the spectroscopy and dynamics of plastocyanin. Robinson D; Besley NA Phys Chem Chem Phys; 2010 Sep; 12(33):9667-76. PubMed ID: 20532328 [TBL] [Abstract][Full Text] [Related]
15. Computer simulation of the interaction of Cu(I) with cys residues at the binding site of the yeast metallochaperone Cu(I)-Atx1. Dalosto SD J Phys Chem B; 2007 Mar; 111(11):2932-40. PubMed ID: 17388422 [TBL] [Abstract][Full Text] [Related]
16. Copper cation interactions with biologically essential types of ligands: a computational DFT study. Pavelka M; Simanek M; Sponer J; Burda JV J Phys Chem A; 2006 Apr; 110(14):4795-809. PubMed ID: 16599448 [TBL] [Abstract][Full Text] [Related]
17. Computer simulations of aqua metal ions for accurate reproduction of hydration free energies and structures. Li X; Tu Y; Tian H; Agren H J Chem Phys; 2010 Mar; 132(10):104505. PubMed ID: 20232969 [TBL] [Abstract][Full Text] [Related]
18. An analytical potential energy function to model protonated peptide soft-landing experiments. The CH3NH3+/CH4 interactions. Deb B; Hu W; Song K; Hase WL Phys Chem Chem Phys; 2008 Aug; 10(31):4565-72. PubMed ID: 18665306 [TBL] [Abstract][Full Text] [Related]
19. New-generation amber united-atom force field. Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629 [TBL] [Abstract][Full Text] [Related]
20. Molecular simulation of the hydration of ethene to ethanol using ab initio potentials and free energy curves. Arroyo ST; Martin-Romo JC; Garcia AH; Martín JA J Phys Chem A; 2007 Dec; 111(51):13515-20. PubMed ID: 18052136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]