These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1654160)

  • 1. [Increase of alpha 1-adrenoreactivity of the rat heart in adaptation to periodic hypoxia].
    Meerson FZ; Kopylov IuN; Baldenkov GN
    Biull Eksp Biol Med; 1991 Jun; 111(6):570-2. PubMed ID: 1654160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of adaptation to high-altitude hypoxia on the adrenoreactivity of the heart and the state of the adenyl cyclase and phosphodiesterase systems of the myocardium].
    Meerson FZ; Krauze EG; Pshennikova MG; Golubeva LIu; Karchevski P
    Fiziol Zh SSSR Im I M Sechenova; 1979 May; 65(5):727-32. PubMed ID: 222637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Adaptation to periodic hypoxia decreases vasoconstrictor and increases vasodilator responses of resistant arteries].
    Mashina SIu; Meerson FZ
    Biull Eksp Biol Med; 1993 Apr; 115(4):345-7. PubMed ID: 8049384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of adaptation to high altitude hypoxia on the contractile function and adrenoreactivity of the heart.
    Meerson FZ; Pshennikova MG
    Basic Res Cardiol; 1979; 74(2):142-54. PubMed ID: 475724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Adrenergic signaling in rat heart is similarly affected by continuous and intermittent normobaric hypoxia.
    Hahnova K; Kasparova D; Zurmanova J; Neckar J; Kolar F; Novotny J
    Gen Physiol Biophys; 2016 Apr; 35(2):165-73. PubMed ID: 26891273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role of the inositol phosphate cycle in the cardioprotective effect of adaptation to intermittent hypoxia].
    Kopylov IuN; Meerson FZ
    Kardiologiia; 1992 Sep; 32(9-10):45-8. PubMed ID: 1287310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of adaptation to periodic and continuous hypoxia in disorders of electrical stability of the heart in postinfarction cardiosclerosis].
    Ustinova EE; Saltykova VA; Didenko VV; Beloshitskiĭ PV; Meerson FZ
    Biull Eksp Biol Med; 1988 May; 105(5):533-5. PubMed ID: 3382726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of adaptation to periodic hypoxia on bioelectric activity of cardiomyocytes of isolated heart in ischemia and reperfusion].
    Vovk VI; Meerson FZ
    Biull Eksp Biol Med; 1991 Jun; 111(6):574-7. PubMed ID: 1893170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Modifying effect of incorporated 137Cs on the mechanism of adrenergic control of myocardial contraction].
    Lobanok LM; Bulanova KIa; Gerasimovich NV; Sineleva MV; Miliutin AA
    Radiats Biol Radioecol; 1994; 34(4-5):651-6. PubMed ID: 7951898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Adaptation to periodic hypoxia decreases ethanol consumption and abstinence-related damages to the internal organs during withdrawal in chronically alcoholized animals].
    Meerson FZ; Krasikov SI; Chavkin II; Bikbulatov MS; Tverdokhlib VP
    Biull Eksp Biol Med; 1992 Dec; 114(12):574-8. PubMed ID: 1292675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of ITP-DAG regulatory cascade in the mechanism of cardioprotective effect of adaptation to stress.
    Meerson FZ; Kopylov YN; Golubeva LYu
    Can J Cardiol; 1994; 10(1):137-47. PubMed ID: 8111667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes.
    Rocha-Singh KJ; Honbo NY; Karliner JS
    J Clin Invest; 1991 Jul; 88(1):204-13. PubMed ID: 1647415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Heart function and the mechanisms of its regulation in modelling adaptation to hypoxia by 2,4-dinitrophenol administration].
    Ivanov AI; Khitrov NK
    Kardiologiia; 1983 Jan; 23(1):94-8. PubMed ID: 6403746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostacyclin production and mediation of adenylate cyclase activity in the pulmonary artery. Alterations after prolonged hypoxia in the rat.
    Shaul PW; Kinane B; Farrar MA; Buja LM; Magness RR
    J Clin Invest; 1991 Aug; 88(2):447-55. PubMed ID: 1864958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cardiac signal transduction systems in chronic ethanol treatment preceding the development of alcoholic cardiomyopathy.
    Strasser RH; Nüchter I; Rauch B; Marquetant R; Seitz H
    Herz; 1996 Aug; 21(4):232-40. PubMed ID: 8805003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Opposite effects on antioxidant enzymes of adaptation to continuous and intermittent hypoxia].
    Meerson FZ; Arkhipenko IVb ; Rozhitskaia II; Didenko VV; Sazontova TG
    Biull Eksp Biol Med; 1992 Jul; 114(7):14-5. PubMed ID: 1421294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and Clinical Implications of Adrenergic Pathways at High Altitude.
    Richalet JP
    Adv Exp Med Biol; 2016; 903():343-56. PubMed ID: 27343107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structural changes in the rat myocardium in the process of adaptation to high-altitude hypoxia].
    Kononova VA
    Biull Eksp Biol Med; 1979 Oct; 88(10):497-500. PubMed ID: 159083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone differentially regulates development of beta-adrenergic receptors, adenylate cyclase and ornithine decarboxylase in rat heart and kidney.
    Pracyk JB; Slotkin TA
    J Dev Physiol; 1991 Oct; 16(4):251-61. PubMed ID: 1667405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Functional reserves of the sympathetic apparatus of the heart in hypoxia].
    Khitrov NK; Alaverdian AM
    Kosm Biol Aviakosm Med; 1978; 12(2):53-6. PubMed ID: 642422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.