These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16542223)

  • 1. Bayesian robust inference for differential gene expression in microarrays with multiple samples.
    Gottardo R; Raftery AE; Yeung KY; Bumgarner RE
    Biometrics; 2006 Mar; 62(1):10-8. PubMed ID: 16542223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical analysis of microarray data: a Bayesian approach.
    Gottardo R; Pannucci JA; Kuske CR; Brettin T
    Biostatistics; 2003 Oct; 4(4):597-620. PubMed ID: 14557114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal uniform mixture differential gene expression detection for cDNA microarrays.
    Dean N; Raftery AE
    BMC Bioinformatics; 2005 Jul; 6():173. PubMed ID: 16011807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian mixture model for partitioning gene expression data.
    Zhou C; Wakefield J
    Biometrics; 2006 Jun; 62(2):515-25. PubMed ID: 16918916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Laplace mixture model for identification of differential expression in microarray experiments.
    Bhowmick D; Davison AC; Goldstein DR; Ruffieux Y
    Biostatistics; 2006 Oct; 7(4):630-41. PubMed ID: 16565148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Significance Analysis of Microarrays by Minimum
    Shahjaman M; Kumar N; Mollah MMH; Ahmed MS; Ara Begum A; Shahinul Islam SM; Mollah MNH
    Biomed Res Int; 2017; 2017():5310198. PubMed ID: 28819626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flexible and powerful bayesian hierarchical model for ChIP-Chip experiments.
    Gottardo R; Li W; Johnson WE; Liu XS
    Biometrics; 2008 Jun; 64(2):468-78. PubMed ID: 17888037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian neural networks for bivariate binary data: an application to prostate cancer study.
    Chakraborty S; Ghosh M; Maiti T; Tewari A
    Stat Med; 2005 Dec; 24(23):3645-62. PubMed ID: 16138362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian classification and non-Bayesian label estimation via EM algorithm to identify differentially expressed genes: a comparative study.
    Antunes M; Sousa L
    Biom J; 2008 Oct; 50(5):824-36. PubMed ID: 18932140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments.
    Sartor MA; Tomlinson CR; Wesselkamper SC; Sivaganesan S; Leikauf GD; Medvedovic M
    BMC Bioinformatics; 2006 Dec; 7():538. PubMed ID: 17177995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semiparametric Bayesian approach for estimating the gene expression distribution.
    Zou F; Huang H; Ibrahim JG
    J Biopharm Stat; 2010 Mar; 20(2):267-80. PubMed ID: 20309758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified approach for simultaneous gene clustering and differential expression identification.
    Yuan M; Kendziorski C
    Biometrics; 2006 Dec; 62(4):1089-98. PubMed ID: 17156283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible empirical Bayes models for differential gene expression.
    Lo K; Gottardo R
    Bioinformatics; 2007 Feb; 23(3):328-35. PubMed ID: 17138586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian ranking and selection methods using hierarchical mixture models in microarray studies.
    Noma H; Matsui S; Omori T; Sato T
    Biostatistics; 2010 Apr; 11(2):281-9. PubMed ID: 19946026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probability fold change: a robust computational approach for identifying differentially expressed gene lists.
    Deng X; Xu J; Hui J; Wang C
    Comput Methods Programs Biomed; 2009 Feb; 93(2):124-39. PubMed ID: 18842321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene selection: a Bayesian variable selection approach.
    Lee KE; Sha N; Dougherty ER; Vannucci M; Mallick BK
    Bioinformatics; 2003 Jan; 19(1):90-7. PubMed ID: 12499298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian modeling of differential gene expression.
    Lewin A; Richardson S; Marshall C; Glazier A; Aitman T
    Biometrics; 2006 Mar; 62(1):1-9. PubMed ID: 16542224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BGX: a fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data.
    Hein AM; Richardson S; Causton HC; Ambler GK; Green PJ
    Biostatistics; 2005 Jul; 6(3):349-73. PubMed ID: 15831583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays.
    McLachlan GJ; Bean RW; Jones LB
    Bioinformatics; 2006 Jul; 22(13):1608-15. PubMed ID: 16632494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical bayes methods and false discovery rates for microarrays.
    Efron B; Tibshirani R
    Genet Epidemiol; 2002 Jun; 23(1):70-86. PubMed ID: 12112249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.