BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16542412)

  • 1. Effect of influent COD/SO4(2-) ratios on mesophilic anaerobic reactor biomass populations: physico-chemical and microbiological properties.
    O'Reilly C; Colleran E
    FEMS Microbiol Ecol; 2006 Apr; 56(1):141-53. PubMed ID: 16542412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial sulphate reduction during anaerobic digestion: EGSB process performance and potential for nitrite suppression of SRB activity.
    O'Reilly C; Colleran E
    Water Sci Technol; 2005; 52(1-2):371-6. PubMed ID: 16180452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD:sulfate ratios in a UASB reactor.
    Hirasawa JS; Sarti A; Del Aguila NK; Varesche MB
    Anaerobe; 2008 Oct; 14(4):209-18. PubMed ID: 18634895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors.
    Pender S; Toomey M; Carton M; Eardly D; Patching JW; Colleran E; O'Flaherty V
    Water Res; 2004 Feb; 38(3):619-30. PubMed ID: 14723931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of seed sludge and operation conditions on performance and archaeal community structure of low-temperature anaerobic solvent-degrading bioreactors.
    Enright AM; McGrath V; Gill D; Collins G; O'Flaherty V
    Syst Appl Microbiol; 2009 Feb; 32(1):65-79. PubMed ID: 19108975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic treatment of landfill leachate by sulfate reduction.
    Henry JG; Prasad D
    Water Sci Technol; 2000; 41(3):239-46. PubMed ID: 11381997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of low-temperature (15 degrees C), anaerobic, wastewater treatment granules.
    O'Reilly J; Chinalia FA; Mahony T; Collins G; Wu J; O'Flaherty V
    Lett Appl Microbiol; 2009 Oct; 49(4):421-6. PubMed ID: 19674296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesophilic and thermophilic anaerobic digestion of sulphate-containing wastewaters.
    Colleran E; Pender S
    Water Sci Technol; 2002; 45(10):231-5. PubMed ID: 12188550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermophilic (55 degrees C) conversion of methanol in methanogenic-UASB reactors: influence of sulphate on methanol degradation and competition.
    Paulo PL; Vallero MV; Treviño RH; Lettinga G; Lens PN
    J Biotechnol; 2004 Jul; 111(1):79-88. PubMed ID: 15196772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.
    Huang CL; Chen CC; Lin CY; Liu WT
    Water Sci Technol; 2009; 59(10):1901-9. PubMed ID: 19474483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.
    Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS
    Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.
    Omil F; Lens P; Visser A; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 1998 Mar; 57(6):676-85. PubMed ID: 10099247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors.
    Sousa DZ; Pereira MA; Smidt H; Stams AJ; Alves MM
    FEMS Microbiol Ecol; 2007 May; 60(2):252-65. PubMed ID: 17374128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16-37 degrees C.
    McHugh S; Carton M; Collins G; O'Flaherty V
    FEMS Microbiol Ecol; 2004 Jun; 48(3):369-78. PubMed ID: 19712306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of microbial trophic structures of two anaerobic bioreactors processing sulfate-rich waste streams.
    Briones AM; Daugherty BJ; Angenent LT; Rausch K; Tumbleson M; Raskin L
    Water Res; 2009 Oct; 43(18):4451-60. PubMed ID: 19643455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive reaction kinetics of sulfate-reducing bacteria and methanogenic bacteria in anaerobic filters.
    Chou HH; Huang JS; Chen WG; Ohara R
    Bioresour Technol; 2008 Nov; 99(17):8061-7. PubMed ID: 18448334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge.
    Fernández N; Sierra-Alvarez R; Field JA; Amils R; Sanz JL
    Chemosphere; 2008 Jan; 70(3):462-74. PubMed ID: 17689587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of micro-algal biomass as a carbon source for biological sulphate reducing systems.
    Boshoff G; Duncan J; Rose PD
    Water Res; 2004 Jun; 38(11):2659-66. PubMed ID: 15207596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring granule formation in anaerobic upflow bioreactors using oligonucleotide hybridization probes.
    Zheng D; Angenent LT; Raskin L
    Biotechnol Bioeng; 2006 Jun; 94(3):458-72. PubMed ID: 16628749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of nutrients on biomass evolution in an upflow anaerobic sludge blanket reactor degrading sulfate-laden organics.
    Patidar SK; Tare V
    Water Environ Res; 2004; 76(7):2620-7. PubMed ID: 16042109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.