BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16542458)

  • 1. Identification of physicochemical selective pressure on protein encoding nucleotide sequences.
    Wong WS; Sainudiin R; Nielsen R
    BMC Bioinformatics; 2006 Mar; 7():148. PubMed ID: 16542458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes.
    Yang Z; Swanson WJ
    Mol Biol Evol; 2002 Jan; 19(1):49-57. PubMed ID: 11752189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites.
    Yang Z; Swanson WJ; Vacquier VD
    Mol Biol Evol; 2000 Oct; 17(10):1446-55. PubMed ID: 11018152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system.
    Sainudiin R; Wong WS; Yogeeswaran K; Nasrallah JB; Yang Z; Nielsen R
    J Mol Evol; 2005 Mar; 60(3):315-26. PubMed ID: 15871042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical properties of the branch-site test of positive selection.
    Yang Z; dos Reis M
    Mol Biol Evol; 2011 Mar; 28(3):1217-28. PubMed ID: 21087944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-to-site variation of synonymous substitution rates.
    Pond SK; Muse SV
    Mol Biol Evol; 2005 Dec; 22(12):2375-85. PubMed ID: 16107593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites.
    Wong WS; Yang Z; Goldman N; Nielsen R
    Genetics; 2004 Oct; 168(2):1041-51. PubMed ID: 15514074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach.
    Stern A; Doron-Faigenboim A; Erez E; Martz E; Bacharach E; Pupko T
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W506-11. PubMed ID: 17586822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dirichlet process model for detecting positive selection in protein-coding DNA sequences.
    Huelsenbeck JP; Jain S; Frost SW; Pond SL
    Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6263-8. PubMed ID: 16606848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary models accounting for layers of selection in protein-coding genes and their impact on the inference of positive selection.
    Rubinstein ND; Doron-Faigenboim A; Mayrose I; Pupko T
    Mol Biol Evol; 2011 Dec; 28(12):3297-308. PubMed ID: 21690564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Regional Variation in Selection Intensity within Protein-Coding Genes Using DNA Sequence Polymorphism and Divergence.
    Zhao ZM; Campbell MC; Li N; Lee DSW; Zhang Z; Townsend JP
    Mol Biol Evol; 2017 Nov; 34(11):3006-3022. PubMed ID: 28962009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting positively selected sites from amino Acid sequences: an implicit codon model.
    Ouyang Z; Liang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5302-6. PubMed ID: 18003204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective pressures at a codon-level predict deleterious mutations in human disease genes.
    Arbiza L; Duchi S; Montaner D; Burguet J; Pantoja-Uceda D; Pineda-Lucena A; Dopazo J; Dopazo H
    J Mol Biol; 2006 May; 358(5):1390-404. PubMed ID: 16584746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian semiparametric regression models to characterize molecular evolution.
    Datta S; Rodriguez A; Prado R
    BMC Bioinformatics; 2012 Oct; 13():278. PubMed ID: 23107360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting selection in noncoding regions of nucleotide sequences.
    Wong WS; Nielsen R
    Genetics; 2004 Jun; 167(2):949-58. PubMed ID: 15238543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust inference of positive selection from recombining coding sequences.
    Scheffler K; Martin DP; Seoighe C
    Bioinformatics; 2006 Oct; 22(20):2493-9. PubMed ID: 16895925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating absolute rates of synonymous and nonsynonymous nucleotide substitution in order to characterize natural selection and date species divergences.
    Seo TK; Kishino H; Thorne JL
    Mol Biol Evol; 2004 Jul; 21(7):1201-13. PubMed ID: 15014159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.
    Karchin R; Diekhans M; Kelly L; Thomas DJ; Pieper U; Eswar N; Haussler D; Sali A
    Bioinformatics; 2005 Jun; 21(12):2814-20. PubMed ID: 15827081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of selection pressure on a protein based on the hierarchical Bayesian model.
    Watabe T; Kishino H
    Mol Biol Evol; 2013 Dec; 30(12):2714-22. PubMed ID: 24002809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of protein coding sequences from human, mouse and the domesticated pig.
    Jørgensen FG; Hobolth A; Hornshøj H; Bendixen C; Fredholm M; Schierup MH
    BMC Biol; 2005 Jan; 3():2. PubMed ID: 15679890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.