These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16542633)

  • 1. Interactions of the surface heat and moisture transfer from the human body under varying climatic conditions and walking speeds.
    Qian X; Fan J
    Appl Ergon; 2006 Nov; 37(6):685-93. PubMed ID: 16542633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind.
    Qian X; Fan J
    Ann Occup Hyg; 2006 Nov; 50(8):833-42. PubMed ID: 16857703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New functions and applications of walter, the sweating fabric manikin.
    Fan J; Qian X
    Eur J Appl Physiol; 2004 Sep; 92(6):641-4. PubMed ID: 15138829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of added fullness and ventilation holes in T-shirt design on thermal comfort.
    Ho C; Fan J; Newton E; Au R
    Ergonomics; 2011 Apr; 54(4):403-10. PubMed ID: 21491282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of posture positions on the evaporative resistance and thermal insulation of clothing.
    Wu YS; Fan JT; Yu W
    Ergonomics; 2011 Mar; 54(3):301-13. PubMed ID: 21390960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?
    Wang F; Gao C; Kuklane K; Holmér I
    Ann Occup Hyg; 2011 Aug; 55(7):775-83. PubMed ID: 21669906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of the heat loss method for calculating clothing real evaporative resistance.
    Wang F; Zhang C; Lu Y
    J Therm Biol; 2015 Aug; 52():45-51. PubMed ID: 26267497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quasi-physical model for predicting the thermal insulation and moisture vapour resistance of clothing.
    Qian X; Fan J
    Appl Ergon; 2009 Jul; 40(4):577-90. PubMed ID: 18835476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of two kinds of clothing made from hydrophobic and hydrophilic fabrics on local sweating rates at an ambient temperature of 37 degrees C.
    Ha M; Tokura H; Yamashita Y
    Ergonomics; 1995 Jul; 38(7):1445-55. PubMed ID: 7635133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).
    Lu Y; Wang F; Peng H; Shi W; Song G
    Int J Biometeorol; 2016 Apr; 60(4):481-8. PubMed ID: 26150329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of moisture transport on microclimate under T-shirts.
    Dai XQ; Imamura R; Liu GL; Zhou FP
    Eur J Appl Physiol; 2008 Sep; 104(2):337-40. PubMed ID: 18071744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resultant clothing insulation during exercise in the cold.
    Holmér I; Gavhed DC
    Arctic Med Res; 1991; 50 Suppl 6():94-8. PubMed ID: 1811589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The actual insulation of multilayer clothing.
    Lotens WA
    Scand J Work Environ Health; 1989; 15 Suppl 1():66-75. PubMed ID: 2609122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent trends in clothing physiology.
    Holmér I
    Scand J Work Environ Health; 1989; 15 Suppl 1():58-65. PubMed ID: 2692141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation.
    Lu Y; Wang F; Wan X; Song G; Shi W; Zhang C
    Int J Biometeorol; 2015 Oct; 59(10):1475-86. PubMed ID: 25597033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flight coverall microclimate evaluation using a Japanese type sweating mannequin.
    Kurihara K; Miyamoto Y
    Aviat Space Environ Med; 1998 Dec; 69(12):1174-7. PubMed ID: 9856542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clothing insulation in a hypobaric environment.
    Chang SK; Santee WR
    Aviat Space Environ Med; 1996 Sep; 67(9):827-34. PubMed ID: 9025797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous derivation of clothing-specific heat exchange coefficients.
    Kenney WL; Mikita DJ; Havenith G; Puhl SM; Crosby P
    Med Sci Sports Exerc; 1993 Feb; 25(2):283-9. PubMed ID: 8450734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating cold, wind, and moisture protection of different coverings for prehospital maritime transportation-a thermal manikin and human study.
    Jussila K; Rissanen S; Parkkola K; Anttonen Hannu
    Prehosp Disaster Med; 2014 Dec; 29(6):580-8. PubMed ID: 25358397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation.
    Lu Y; Wang F; Wan X; Song G; Zhang C; Shi W
    Int J Biometeorol; 2015 Oct; 59(10):1487-98. PubMed ID: 25605409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.