BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 1654290)

  • 1. Oxygen-dependent antagonism of lipid peroxidation.
    Thom SR; Elbuken ME
    Free Radic Biol Med; 1991; 10(6):413-26. PubMed ID: 1654290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inert gas enhancement of superoxide radical production.
    Thom SR
    Arch Biochem Biophys; 1992 Jun; 295(2):391-6. PubMed ID: 1316738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet oxygen-trapping reaction as a method of (1)O2 detection: role of some reducing agents.
    Dzwigaj S; Pezerat H
    Free Radic Res; 1995 Aug; 23(2):103-15. PubMed ID: 7581808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysosomal enzyme leakage during the hypoxanthine/xanthine oxidase reaction.
    Olsson GM; Svensson I; Zdolsek JM; Brunk UT
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1989; 56(6):385-91. PubMed ID: 2567086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system.
    Kellogg EW; Fridovich I
    J Biol Chem; 1975 Nov; 250(22):8812-7. PubMed ID: 171266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide.
    Gutteridge JM
    FEBS Lett; 1984 Jul; 172(2):245-9. PubMed ID: 6086389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparin: does it act as an antioxidant in vivo?
    Lapenna D; Mezzetti A; de Gioia S; Ciofani G; Marzio L; Di Ilio C; Cuccurullo F
    Biochem Pharmacol; 1992 Jul; 44(1):188-91. PubMed ID: 1321628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin trapping study of superoxide production in ferrous ion oxidation.
    Kosaka H; Shiga T
    Free Radic Res Commun; 1993; 19 Suppl 1():S63-9. PubMed ID: 8282233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.
    Cordeiro RM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):438-44. PubMed ID: 24095673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide.
    Miles AM; Bohle DS; Glassbrenner PA; Hansert B; Wink DA; Grisham MB
    J Biol Chem; 1996 Jan; 271(1):40-7. PubMed ID: 8550595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives.
    Rubbo H; Parthasarathy S; Barnes S; Kirk M; Kalyanaraman B; Freeman BA
    Arch Biochem Biophys; 1995 Dec; 324(1):15-25. PubMed ID: 7503550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitoxantrone and ametantrone inhibit hydroperoxide-dependent initiation and propagation reactions in fatty acid peroxidation.
    Kharasch ED; Novak RF
    J Biol Chem; 1985 Sep; 260(19):10645-52. PubMed ID: 2993283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo?
    Aruoma OI; Laughton MJ; Halliwell B
    Biochem J; 1989 Dec; 264(3):863-9. PubMed ID: 2559719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of solution ionic strength on lipid peroxidation initiation by the perhydroxyl (xanthine oxidase-derived) and peroxyl radicals.
    Aikens J; Dix TA
    Chem Res Toxicol; 1992; 5(2):263-7. PubMed ID: 1322738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.