BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 1654323)

  • 21. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM; Jones DS
    Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast methionyl-tRNA synthetase: analysis of the N-terminal extension and the putative tRNA anticodon binding region by site-directed mutagenesis.
    Walter P; Despons L; Laforet M; Ebel JP; Fasiolo F
    Biochimie; 1990 Aug; 72(8):537-44. PubMed ID: 2126459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selectivity and specificity of substrate binding in methionyl-tRNA synthetase.
    Datta D; Vaidehi N; Zhang D; Goddard WA
    Protein Sci; 2004 Oct; 13(10):2693-705. PubMed ID: 15388861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methionyl-tRNA synthetase gene from an extreme thermophile, Thermus thermophilus HB8. Molecular cloning, primary-structure analysis, expression in Escherichia coli, and site-directed mutagenesis.
    Nureki O; Muramatsu T; Suzuki K; Kohda D; Matsuzawa H; Ohta T; Miyazawa T; Yokoyama S
    J Biol Chem; 1991 Feb; 266(5):3268-77. PubMed ID: 1993699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of residues involved in the binding of methionine by Escherichia coli methionyl-tRNA synthetase.
    Fourmy D; Mechulam Y; Brunie S; Blanquet S; Fayat G
    FEBS Lett; 1991 Nov; 292(1-2):259-63. PubMed ID: 1959615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase.
    Kim HY; Ghosh G; Schulman LH; Brunie S; Jakubowski H
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11553-7. PubMed ID: 8265588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions.
    Senger B; Despons L; Walter P; Jakubowski H; Fasiolo F
    J Mol Biol; 2001 Aug; 311(1):205-16. PubMed ID: 11469869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transition state stabilization by the 'high' motif of class I aminoacyl-tRNA synthetases: the case of Escherichia coli methionyl-tRNA synthetase.
    Schmitt E; Panvert M; Blanquet S; Mechulam Y
    Nucleic Acids Res; 1995 Dec; 23(23):4793-8. PubMed ID: 8532520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues.
    Kalogerakos T; Hountondji C; Berne PF; Dukta S; Blanquet S
    Biochimie; 1994; 76(1):33-44. PubMed ID: 8031903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A site in the dinucleotide-fold domain contributes to the accuracy of tRNA selection by Escherichia coli methionyl-tRNA synthetase.
    Kim HY; Pak M; Jakubowski H
    Mol Cells; 1998 Oct; 8(5):623-8. PubMed ID: 9856352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase.
    Fourmy D; Meinnel T; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Jun; 231(4):1068-77. PubMed ID: 8515465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystallographic study at 2.5 A resolution of the interaction of methionyl-tRNA synthetase from Escherichia coli with ATP.
    Brunie S; Zelwer C; Risler JL
    J Mol Biol; 1990 Nov; 216(2):411-24. PubMed ID: 2254937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases.
    Liu C; Sanders JM; Pascal JM; Hou YM
    RNA; 2012 Feb; 18(2):213-21. PubMed ID: 22184460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.
    Burbaum JJ; Schimmel P
    Protein Sci; 1992 May; 1(5):575-81. PubMed ID: 1304356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. C-terminal peptide appendix in a class I tRNA synthetase needed for acceptor-helix contacts and microhelix aminoacylation.
    Kim S; Landro JA; Gale AJ; Schimmel P
    Biochemistry; 1993 Dec; 32(48):13026-31. PubMed ID: 8241156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical and phylogenetic analyses of methionyl-tRNA synthetase isolated from a pathogenic microorganism, Mycobacterium tuberculosis.
    Kim S; Jo YJ; Lee SH; Motegi H; Shiba K; Sassanfar M; Martinis SA
    FEBS Lett; 1998 May; 427(2):259-62. PubMed ID: 9607323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing interactions of aminoacyl-adenylate with
    Volynets GP; Gudzera OI; Usenko MO; Gorbatiuk OB; Yarmoluk SM; Tukalo MA
    J Biomol Struct Dyn; 2023; 41(13):6450-6458. PubMed ID: 35930324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methionyl-tRNA synthetase from Escherichia coli: substituting magnesium by manganese in the L-methionine activating reaction.
    Hyafil F; Blanquet S
    Eur J Biochem; 1977 Apr; 74(3):481-93. PubMed ID: 323013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli.
    Jacques Y; Blanquet S
    Eur J Biochem; 1977 Oct; 79(2):433-41. PubMed ID: 336359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of the metal ligands and characterization of a putative zinc finger in methionyl-tRNA synthetase.
    Xu B; Krudy GA; Rosevear PR
    J Biol Chem; 1993 Aug; 268(22):16259-64. PubMed ID: 8344912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.