These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 16543494)

  • 1. Nitric oxide and posttranslational modification of the vascular proteome: S-nitrosation of reactive thiols.
    Handy DE; Loscalzo J
    Arterioscler Thromb Vasc Biol; 2006 Jun; 26(6):1207-14. PubMed ID: 16543494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the S-nitrosoproteome: tools and strategies.
    López-Sánchez LM; Muntané J; de la Mata M; Rodríguez-Ariza A
    Proteomics; 2009 Feb; 9(4):808-18. PubMed ID: 19160395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein S-nitrosation: biochemistry and characterization of protein thiol-NO interactions as cellular signals.
    Miersch S; Mutus B
    Clin Biochem; 2005 Sep; 38(9):777-91. PubMed ID: 16005861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of nitrogen monoxide species with NADH: implications for nitric oxide-dependent posttranslational protein modification.
    Ewing JF; Janero DR; Grinnell TA; Schroeder JD; Garvey DS
    Arch Biochem Biophys; 1997 Jul; 343(1):131-9. PubMed ID: 9210655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular S-nitrosoglutathione, but not S-nitrosocysteine or N(2)O(3), mediates protein S-nitrosation in rat spinal cord slices.
    Romero JM; Bizzozero OA
    J Neurochem; 2006 Nov; 99(4):1299-310. PubMed ID: 17018024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of redox signaling involving chemical conjugation of protein thiols by nitric oxide and electrophiles.
    Sawa T; Arimoto H; Akaike T
    Bioconjug Chem; 2010 Jul; 21(7):1121-9. PubMed ID: 20225829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Intervention by nitric oxide, NO, and its oxide derivatives particularly in mammals].
    Ducrocq C; Servy C; Cudic M; Blanchard EB
    Can J Physiol Pharmacol; 2001 Feb; 79(2):95-102. PubMed ID: 11235675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine.
    Mitchell DA; Marletta MA
    Nat Chem Biol; 2005 Aug; 1(3):154-8. PubMed ID: 16408020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning.
    Hill BG; Darley-Usmar VM
    Biochem J; 2008 Jun; 412(2):e11-3. PubMed ID: 18466111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide controls nuclear export of APE1/Ref-1 through S-nitrosation of cysteines 93 and 310.
    Qu J; Liu GH; Huang B; Chen C
    Nucleic Acids Res; 2007; 35(8):2522-32. PubMed ID: 17403694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein thiol modification by peroxynitrite anion and nitric oxide donors.
    Landino LM
    Methods Enzymol; 2008; 440():95-109. PubMed ID: 18423212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrosation and oxidation in the regulation of gene expression.
    Marshall HE; Merchant K; Stamler JS
    FASEB J; 2000 Oct; 14(13):1889-900. PubMed ID: 11023973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic identification of S-nitrosylated proteins in endothelial cells.
    Martínez-Ruiz A; Lamas S
    Methods Mol Biol; 2007; 357():215-23. PubMed ID: 17172690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrosating agents: is peroxynitrite a likely candidate?
    Williams DL
    Nitric Oxide; 1997; 1(6):522-7. PubMed ID: 9466958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation.
    Wolhuter K; Whitwell HJ; Switzer CH; Burgoyne JR; Timms JF; Eaton P
    Mol Cell; 2018 Feb; 69(3):438-450.e5. PubMed ID: 29358077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences.
    Martínez-Ruiz A; Lamas S
    Cardiovasc Res; 2007 Jul; 75(2):220-8. PubMed ID: 17451659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor.
    Beuve A
    Antioxid Redox Signal; 2017 Jan; 26(3):137-149. PubMed ID: 26906466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of S-nitrosothiol homeostasis and targets for protein S-nitrosation in human hepatocytes.
    López-Sánchez LM; Corrales FJ; González R; Ferrín G; Muñoz-Castañeda JR; Ranchal I; Hidalgo AB; Briceño J; López-Cillero P; Gómez MA; De La Mata M; Muntané J; Rodríguez-Ariza A
    Proteomics; 2008 Nov; 8(22):4709-20. PubMed ID: 18850629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteins.
    Zhang Y; Keszler A; Broniowska KA; Hogg N
    Free Radic Biol Med; 2005 Apr; 38(7):874-81. PubMed ID: 15749383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat.
    Bykova NV; Hoehn B; Rampitsch C; Hu J; Stebbing JA; Knox R
    Phytochemistry; 2011 Jul; 72(10):1162-72. PubMed ID: 21295800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.