BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 16543657)

  • 1. Shear-dependent aggregation characteristics of red blood cells in a pressure-driven microfluidic channel.
    Shin S; Park MS; Ku YH; Suh JS
    Clin Hemorheol Microcirc; 2006; 34(1-2):353-61. PubMed ID: 16543657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.
    Lim HJ; Nam JH; Lee YJ; Shin S
    Rev Sci Instrum; 2009 Sep; 80(9):096101. PubMed ID: 19791972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular determinants of low-shear blood viscosity.
    Baskurt OK; Meiselman HJ
    Biorheology; 1997; 34(3):235-47. PubMed ID: 9474265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transient, microfluidic approach to the investigation of erythrocyte aggregation: the threshold shear-stress for erythrocyte disaggregation.
    Shin S; Nam JH; Hou JX; Suh JS
    Clin Hemorheol Microcirc; 2009; 42(2):117-25. PubMed ID: 19433885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity.
    Janzen J; Elliott TG; Carter CJ; Brooks DE
    Biorheology; 2000; 37(3):225-37. PubMed ID: 11026942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers.
    Armstrong JK; Meiselman HJ; Wenby RB; Fisher TC
    Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent threshold shear stress of red blood cell aggregation.
    Lim HJ; Lee YJ; Nam JH; Chung S; Shin S
    J Biomech; 2010 Feb; 43(3):546-50. PubMed ID: 19878949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red blood cell aggregation quantitated via Myrenne aggregometer and yield shear stress.
    Lee BK; Alexy T; Wenby RB; Meiselman HJ
    Biorheology; 2007; 44(1):29-35. PubMed ID: 17502687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological properties of fetal red cells with special reference to aggregability and disaggregability analyzed by light transmission and laser backscattering techniques.
    El Bouhmadi A; Boulot P; Laffargue F; Brun JF
    Clin Hemorheol Microcirc; 2000; 22(2):79-90. PubMed ID: 10831059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution.
    Pribush A; Meyerstein D; Meiselman HJ; Meyerstein N
    Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of polyethylene glycol and hydroxyethyl starch in University of Wisconsin preservation solution on human red blood cell aggregation and viscosity.
    Mosbah IB; Franco-Gou R; Abdennebi HB; Hernandez R; Escolar G; Saidane D; Rosello-Catafau J; Peralta C
    Transplant Proc; 2006 Jun; 38(5):1229-35. PubMed ID: 16797270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood.
    Li M; Ku DN; Forest CR
    Lab Chip; 2012 Apr; 12(7):1355-62. PubMed ID: 22358184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cyclodextrins on RBC aggregation and blood viscosity.
    Toyama Y; Pais E; Meiselman HJ; Alexy T
    Clin Hemorheol Microcirc; 2007; 36(2):173-80. PubMed ID: 17325441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell deformability and aggregation behaviour in different animal species.
    Plasenzotti R; Stoiber B; Posch M; Windberger U
    Clin Hemorheol Microcirc; 2004; 31(2):105-11. PubMed ID: 15310945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of N-methyl D-aspartate (NMDA) receptors has no influence on rheological properties of erythrocytes.
    Reinhart WH; Geissmann-Ott C; Bogdanova A
    Clin Hemorheol Microcirc; 2011; 49(1-4):307-13. PubMed ID: 22214702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.