These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16543703)

  • 1. Somatotopic representation of acupoints in human primary somatosensory cortex: an FMRI study.
    Nakagoshi A; Fukunaga M; Umeda M; Mori Y; Higuchi T; Tanaka C
    Magn Reson Med Sci; 2005 Dec; 4(4):187-9. PubMed ID: 16543703
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional magnetic resonance imaging evidence for a representation of the ear in human primary somatosensory cortex: comparison with magnetoencephalography study.
    Nihashi T; Kakigi R; Okada T; Sadato N; Kashikura K; Kajita Y; Yoshida J
    Neuroimage; 2002 Nov; 17(3):1217-26. PubMed ID: 12414262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic organization of the human primary and secondary somatosensory cortices: comparison of fMRI and MEG findings.
    Del Gratta C; Della Penna S; Ferretti A; Franciotti R; Pizzella V; Tartaro A; Torquati K; Bonomo L; Romani GL; Rossini PM
    Neuroimage; 2002 Nov; 17(3):1373-83. PubMed ID: 12414277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-shot echo-planar functional magnetic resonance imaging of representations of the fore- and hindpaws in the somatosensory cortex of rats using an 11.7 T microimager.
    Chen Z; Shen J
    J Neurosci Methods; 2006 Mar; 151(2):268-75. PubMed ID: 16168491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cortical representation of the hand in macaque and human area S-I: high resolution optical imaging.
    Shoham D; Grinvald A
    J Neurosci; 2001 Sep; 21(17):6820-35. PubMed ID: 11517270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying the human somatosensory hand area: A new way to compare fMRI and MEG.
    Stoeckel MC; Pollok B; Schnitzler A; Seitz RJ
    J Neurosci Methods; 2007 Aug; 164(2):280-91. PubMed ID: 17597225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent neural processes specific to the acute and sustained phases of verum and SHAM acupuncture.
    Liu J; Qin W; Guo Q; Sun J; Yuan K; Dong M; Liu P; Zhang Y; von Deneen KM; Liu Y; Tian J
    J Magn Reson Imaging; 2011 Jan; 33(1):33-40. PubMed ID: 21182118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of the rat somatosensory cortex at different frequencies and pulse widths.
    Van Camp N; Verhoye M; Van der Linden A
    NMR Biomed; 2006 Feb; 19(1):10-7. PubMed ID: 16408324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fMRI reflects functional connectivity of human somatosensory cortex.
    Blatow M; Nennig E; Durst A; Sartor K; Stippich C
    Neuroimage; 2007 Sep; 37(3):927-36. PubMed ID: 17629500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional architecture of the somatosensory homunculus detected by electrostimulation.
    Roux FE; Djidjeli I; Durand JB
    J Physiol; 2018 Mar; 596(5):941-956. PubMed ID: 29285773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Event-related fMRI of the somatosensory system using electrical finger stimulation.
    Deuchert M; Ruben J; Schwiemann J; Meyer R; Thees S; Krause T; Blankenburg F; Villringer K; Kurth R; Curio G; Villringer A
    Neuroreport; 2002 Mar; 13(3):365-9. PubMed ID: 11930139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High field BOLD response to forepaw stimulation in the mouse.
    Adamczak JM; Farr TD; Seehafer JU; Kalthoff D; Hoehn M
    Neuroimage; 2010 Jun; 51(2):704-12. PubMed ID: 20211267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state activation in somatosensory cortex after changes in stimulus rate during median nerve stimulation.
    Manganotti P; Formaggio E; Storti SF; Avesani M; Acler M; Sala F; Magon S; Zoccatelli G; Pizzini F; Alessandrini F; Fiaschi A; Beltramello A
    Magn Reson Imaging; 2009 Nov; 27(9):1175-86. PubMed ID: 19628351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Within-limb somatotopic organization in human SI and parietal operculum for the leg: an fMRI study.
    Bao R; Wei P; Li K; Lu J; Zhao C; Wang Y; Zhang T
    Brain Res; 2012 Mar; 1445():30-9. PubMed ID: 22305143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated analysis protocol for high resolution BOLD-fMRI mapping of the fingertip somatotopy in brodmann area 3b.
    Pfannmöller JP; Schweizer R; Lotze M
    J Magn Reson Imaging; 2016 Feb; 43(2):479-86. PubMed ID: 26114834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel passive functional MRI paradigm for preoperative identification of the somatosensory cortex.
    Gasser TG; Sandalcioglu EI; Wiedemayer H; Hans V; Gizewski E; Forsting M; Stolke D
    Neurosurg Rev; 2004 Apr; 27(2):106-12. PubMed ID: 14691663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional mapping of the human somatosensory cortex with echo-planar MRI.
    Sakai K; Watanabe E; Onodera Y; Itagaki H; Yamamoto E; Koizumi H; Miyashita Y
    Magn Reson Med; 1995 May; 33(5):736-43. PubMed ID: 7596280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconvolution analyses with tent functions reveal delayed and long-sustained increases of BOLD signals with acupuncture stimulation.
    Murase T; Umeda M; Fukunaga M; Tanaka C; Higuchi T
    Magn Reson Med Sci; 2013; 12(2):121-7. PubMed ID: 23666154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial resolution of fMRI in the human parasylvian cortex: comparison of somatosensory and auditory activation.
    Ozcan M; Baumgärtner U; Vucurevic G; Stoeter P; Treede RD
    Neuroimage; 2005 Apr; 25(3):877-87. PubMed ID: 15808988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative assessment of sensorimotor function using functional magnetic resonance imaging and electrophysiological methods.
    Puce A
    J Clin Neurophysiol; 1995 Sep; 12(5):450-9. PubMed ID: 8576390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.