These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16543728)

  • 1. Effect of intracellular magnesium and oxygen tension on K+-Cl- cotransport in normal and sickle human red cells.
    Muzyamba MC; Campbell EH; Gibson JS
    Cell Physiol Biochem; 2006; 17(3-4):121-8. PubMed ID: 16543728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen dependence of K(+)-Cl- cotransport in human red cell ghosts and sickle cells.
    Khan AI; Drew C; Ball SE; Ball V; Ellory JC; Gibson JS
    Bioelectrochemistry; 2004 May; 62(2):141-6. PubMed ID: 15039017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-dependent K+ influxes in Mg2+-clamped equine red blood cells.
    Campbell EH; Cossins AR; Gibson JS
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):431-7. PubMed ID: 10050010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dimethyl adipimidate on K+ transport and shape change in red blood cells from sickle cell patients.
    Gibson JS; Stewart GW; Ellory JC
    FEBS Lett; 2000 Sep; 480(2-3):179-83. PubMed ID: 11034324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O2 dependence of K+ transport in sickle cells: the effect of different cell populations and the substituted benzaldehyde 12C79.
    Gibson JS; Khan A; Speake PF; Ellory JC
    FASEB J; 2001 Mar; 15(3):823-32. PubMed ID: 11259401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen sensitivity of red cell membrane transporters revisited.
    Drew C; Ball V; Robinson H; Clive Ellory J; Gibson JS
    Bioelectrochemistry; 2004 May; 62(2):153-8. PubMed ID: 15039019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential oxygen sensitivity of the K+-Cl- cotransporter in normal and sickle human red blood cells.
    Gibson JS; Speake PF; Ellory JC
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):225-34. PubMed ID: 9679176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-dependent K+ fluxes in sheep red cells.
    Campbell EH; Gibson JS
    J Physiol; 1998 Feb; 506 ( Pt 3)(Pt 3):679-88. PubMed ID: 9503330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of pH on the rheologic and antisickling effects of dimethyl adipimidate.
    Pennathur-Das R; Lande WM; Mentzer WC; Mohandas N; Preisler H; Kleman KM; Heath RH; Lubin BH
    J Lab Clin Med; 1984 Nov; 104(5):718-29. PubMed ID: 6491469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients with sickle cell anemia.
    Al Balushi HWM; Rees DC; Brewin JN; Hannemann A; Gibson JS
    Physiol Rep; 2018 Mar; 6(5):. PubMed ID: 29504282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. K(+) transport in red blood cells from human umbilical cord.
    Gibson JS; Speake PF; Muzyamba MC; Husain F; Luckas MC; Ellory JC
    Biochim Biophys Acta; 2001 Jun; 1512(2):231-8. PubMed ID: 11406100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells.
    Ortiz OE; Lew VL; Bookchin RM
    J Physiol; 1990 Aug; 427():211-26. PubMed ID: 2213597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions.
    Abdulmalik O; Pagare PP; Huang B; Xu GG; Ghatge MS; Xu X; Chen Q; Anabaraonye N; Musayev FN; Omar AM; Venitz J; Zhang Y; Safo MK
    Sci Rep; 2020 Nov; 10(1):20277. PubMed ID: 33219275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of urea and oxygen tension on K flux in sickle cells.
    Culliford SJ; Ellory JC; Gibson JS; Speake PF
    Pflugers Arch; 1998 Apr; 435(5):740-2. PubMed ID: 9479028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deoxygenation inhibits the volume-stimulated, Cl(-)-dependent K+ efflux in SS and young AA cells: a cytosolic Mg2+ modulation.
    Canessa M; Fabry ME; Nagel RL
    Blood; 1987 Dec; 70(6):1861-6. PubMed ID: 3676517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of WNK in modulation of KCl cotransport activity in red cells from normal individuals and patients with sickle cell anaemia.
    Lu DC; Hannemann A; Wadud R; Rees DC; Brewin JN; Low PS; Gibson JS
    Pflugers Arch; 2019 Dec; 471(11-12):1539-1549. PubMed ID: 31729557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the antisickling compound GBT1118 on the permeability of red blood cells from patients with sickle cell anemia.
    Al Balushi H; Dufu K; Rees DC; Brewin JN; Hannemann A; Oksenberg D; Lu DC; Gibson JS
    Physiol Rep; 2019 Mar; 7(6):e14027. PubMed ID: 30916477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The super sickling haemoglobin HbS-Oman: a study of red cell sickling, K
    Al Balushi HWM; Wali Y; Al Awadi M; Al-Subhi T; Rees DC; Brewin JN; Hannemann A; Gibson JS
    Br J Haematol; 2017 Oct; 179(2):256-265. PubMed ID: 28699687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells.
    Muzyamba MC; Gibson JS
    J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation Homeostasis in Red Cells From Patients With Sickle Cell Disease Heterologous for HbS and HbC (HbSC Genotype).
    Hannemann A; Rees DC; Tewari S; Gibson JS
    EBioMedicine; 2015 Nov; 2(11):1669-76. PubMed ID: 26870793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.