BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 16543935)

  • 21. Mdm2 and Mdm4 loss regulates distinct p53 activities.
    Barboza JA; Iwakuma T; Terzian T; El-Naggar AK; Lozano G
    Mol Cancer Res; 2008 Jun; 6(6):947-54. PubMed ID: 18567799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MDM2 but not MDM4 promotes retinoblastoma cell proliferation through p53-independent regulation of MYCN translation.
    Qi DL; Cobrinik D
    Oncogene; 2017 Mar; 36(13):1760-1769. PubMed ID: 27748758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of MdmX as a therapeutic target for reactivating p53 in tumors.
    Garcia D; Warr MR; Martins CP; Brown Swigart L; Passegué E; Evan GI
    Genes Dev; 2011 Aug; 25(16):1746-57. PubMed ID: 21852537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribosomal protein S27-like is a physiological regulator of p53 that suppresses genomic instability and tumorigenesis.
    Xiong X; Zhao Y; Tang F; Wei D; Thomas D; Wang X; Liu Y; Zheng P; Sun Y
    Elife; 2014 Aug; 3():e02236. PubMed ID: 25144937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of the MDM2-p53 pathway by the ubiquitin ligase HERC2.
    García-Cano J; Sánchez-Tena S; Sala-Gaston J; Figueras A; Viñals F; Bartrons R; Ventura F; Rosa JL
    Mol Oncol; 2020 Jan; 14(1):69-86. PubMed ID: 31665549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting the p53-Mdm2 feedback loop in vivo: uncoupling the role in p53 stability and activity.
    Pant V; Lozano G
    Oncotarget; 2014 Mar; 5(5):1149-56. PubMed ID: 24658419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Widespread overexpression of epitope-tagged Mdm4 does not accelerate tumor formation in vivo.
    De Clercq S; Gembarska A; Denecker G; Maetens M; Naessens M; Haigh K; Haigh JJ; Marine JC
    Mol Cell Biol; 2010 Nov; 30(22):5394-405. PubMed ID: 20855528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury.
    Joshi Y; Sória MG; Quadrato G; Inak G; Zhou L; Hervera A; Rathore KI; Elnaggar M; Cucchiarini M; Marine JC; Puttagunta R; Di Giovanni S
    Brain; 2015 Jul; 138(Pt 7):1843-62. PubMed ID: 25981963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines.
    Kitagawa M; Aonuma M; Lee SH; Fukutake S; McCormick F
    Oncogene; 2008 Sep; 27(40):5303-14. PubMed ID: 18521084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor.
    Chen D; Kon N; Li M; Zhang W; Qin J; Gu W
    Cell; 2005 Jul; 121(7):1071-83. PubMed ID: 15989956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53.
    Li Z; Day CP; Yang JY; Tsai WB; Lozano G; Shih HM; Hung MC
    Cancer Res; 2004 Dec; 64(24):9080-5. PubMed ID: 15604276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53.
    Parant J; Chavez-Reyes A; Little NA; Yan W; Reinke V; Jochemsen AG; Lozano G
    Nat Genet; 2001 Sep; 29(1):92-5. PubMed ID: 11528400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rescue of Mdm4-deficient mice by Mdm2 reveals functional overlap of Mdm2 and Mdm4 in development.
    Steinman HA; Hoover KM; Keeler ML; Sands AT; Jones SN
    Oncogene; 2005 Nov; 24(53):7935-40. PubMed ID: 16027727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination.
    Ma J; Martin JD; Zhang H; Auger KR; Ho TF; Kirkpatrick RB; Grooms MH; Johanson KO; Tummino PJ; Copeland RA; Lai Z
    Biochemistry; 2006 Aug; 45(30):9238-45. PubMed ID: 16866370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of oocytes due to conditional ablation of Murine double minute 2 (Mdm2) gene is p53-dependent and results in female sterility.
    Livera G; Uzbekov R; Jarrier P; Fouchécourt S; Duquenne C; Parent AS; Marine JC; Monget P
    FEBS Lett; 2016 Aug; 590(16):2566-74. PubMed ID: 27364741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mdmx enhances p53 ubiquitination by altering the substrate preference of the Mdm2 ubiquitin ligase.
    Okamoto K; Taya Y; Nakagama H
    FEBS Lett; 2009 Sep; 583(17):2710-4. PubMed ID: 19619542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ubiquitin ligase COP1 is a critical negative regulator of p53.
    Dornan D; Wertz I; Shimizu H; Arnott D; Frantz GD; Dowd P; O'Rourke K; Koeppen H; Dixit VM
    Nature; 2004 May; 429(6987):86-92. PubMed ID: 15103385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling.
    Lengner CJ; Steinman HA; Gagnon J; Smith TW; Henderson JE; Kream BE; Stein GS; Lian JB; Jones SN
    J Cell Biol; 2006 Mar; 172(6):909-21. PubMed ID: 16533949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TRIAD1 is negatively regulated by the MDM2 E3 ligase.
    Bae S; Jung JH; An IS; Kim OY; Lee MJ; Lee JH; Park IC; Lee SJ; An S
    Oncol Rep; 2012 Nov; 28(5):1924-8. PubMed ID: 22940738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy.
    Li Q; Lozano G
    Clin Cancer Res; 2013 Jan; 19(1):34-41. PubMed ID: 23262034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.