These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 16544192)
1. cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids. Kuraku S; Ishijima J; Nishida-Umehara C; Agata K; Kuratani S; Matsuda Y Chromosome Res; 2006; 14(2):187-202. PubMed ID: 16544192 [TBL] [Abstract][Full Text] [Related]
2. Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC(3) profiling in snake. Matsubara K; Kuraku S; Tarui H; Nishimura O; Nishida C; Agata K; Kumazawa Y; Matsuda Y BMC Genomics; 2012 Nov; 13():604. PubMed ID: 23140509 [TBL] [Abstract][Full Text] [Related]
3. Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Matsuda Y; Nishida-Umehara C; Tarui H; Kuroiwa A; Yamada K; Isobe T; Ando J; Fujiwara A; Hirao Y; Nishimura O; Ishijima J; Hayashi A; Saito T; Murakami T; Murakami Y; Kuratani S; Agata K Chromosome Res; 2005; 13(6):601-15. PubMed ID: 16170625 [TBL] [Abstract][Full Text] [Related]
4. Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. Uno Y; Nishida C; Tarui H; Ishishita S; Takagi C; Nishimura O; Ishijima J; Ota H; Kosaka A; Matsubara K; Murakami Y; Kuratani S; Ueno N; Agata K; Matsuda Y PLoS One; 2012; 7(12):e53027. PubMed ID: 23300852 [TBL] [Abstract][Full Text] [Related]
5. Molecular and cytogenetic characterization of site-specific repetitive DNA sequences in the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae). Yamada K; Nishida-Umehara C; Matsuda Y Chromosome Res; 2005; 13(1):33-46. PubMed ID: 15791410 [TBL] [Abstract][Full Text] [Related]
6. The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Kawagoshi T; Uno Y; Matsubara K; Matsuda Y; Nishida C Cytogenet Genome Res; 2009; 125(2):125-31. PubMed ID: 19729916 [TBL] [Abstract][Full Text] [Related]
7. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates. Figuet E; Ballenghien M; Romiguier J; Galtier N Genome Biol Evol; 2014 Dec; 7(1):240-50. PubMed ID: 25527834 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes. Axelsson E; Webster MT; Smith NG; Burt DW; Ellegren H Genome Res; 2005 Jan; 15(1):120-5. PubMed ID: 15590944 [TBL] [Abstract][Full Text] [Related]
9. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Kawai A; Nishida-Umehara C; Ishijima J; Tsuda Y; Ota H; Matsuda Y Cytogenet Genome Res; 2007; 117(1-4):92-102. PubMed ID: 17675849 [TBL] [Abstract][Full Text] [Related]
10. The Staurotypus turtles and aves share the same origin of sex chromosomes but evolved different types of heterogametic sex determination. Kawagoshi T; Uno Y; Nishida C; Matsuda Y PLoS One; 2014; 9(8):e105315. PubMed ID: 25121779 [TBL] [Abstract][Full Text] [Related]
11. Karyotypic Evolution of Sauropsid Vertebrates Illuminated by Optical and Physical Mapping of the Painted Turtle and Slider Turtle Genomes. Lee LS; Navarro-DomÃnguez BM; Wu Z; Montiel EE; Badenhorst D; Bista B; Gessler TB; Valenzuela N Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32806747 [TBL] [Abstract][Full Text] [Related]
12. Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates. Radhakrishnan S; Valenzuela N J Hered; 2017 Oct; 108(7):720-730. PubMed ID: 29036698 [TBL] [Abstract][Full Text] [Related]
13. Squamate Chromosome Size and GC Content Assessed by Flow Karyotyping. Kasai F; O'Brien PCM; Ferguson-Smith MA Cytogenet Genome Res; 2019; 157(1-2):46-52. PubMed ID: 30904910 [TBL] [Abstract][Full Text] [Related]
15. Reassessment of genome size in turtle and crocodile based on chromosome measurement by flow karyotyping: close similarity to chicken. Kasai F; O'Brien PC; Ferguson-Smith MA Biol Lett; 2012 Aug; 8(4):631-5. PubMed ID: 22491763 [TBL] [Abstract][Full Text] [Related]
16. Genome evolution in Reptilia: in silico chicken mapping of 12,000 BAC-end sequences from two reptiles and a basal bird. Chapus C; Edwards SV BMC Genomics; 2009 Jul; 10 Suppl 2(Suppl 2):S8. PubMed ID: 19607659 [TBL] [Abstract][Full Text] [Related]
17. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. Ohya YK; Kuraku S; Kuratani S J Exp Zool B Mol Dev Evol; 2005 Mar; 304(2):107-18. PubMed ID: 15643629 [TBL] [Abstract][Full Text] [Related]
18. Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae). Young MJ; O'Meally D; Sarre SD; Georges A; Ezaz T Chromosome Res; 2013 Jul; 21(4):361-74. PubMed ID: 23703235 [TBL] [Abstract][Full Text] [Related]
19. Turtle isochore structure is intermediate between amphibians and other amniotes. Chojnowski JL; Braun EL Integr Comp Biol; 2008 Oct; 48(4):454-62. PubMed ID: 21669806 [TBL] [Abstract][Full Text] [Related]