These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 16544207)

  • 1. Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency.
    Srinivasan R; Bibi FA; Nunez PL
    Brain Topogr; 2006; 18(3):167-87. PubMed ID: 16544207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of wave-like spatial structure in the SSVEP: comparison of simultaneous EEG and MEG.
    Thorpe SG; Nunez PL; Srinivasan R
    Stat Med; 2007 Sep; 26(21):3911-26. PubMed ID: 17671957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
    Bayram A; Bayraktaroglu Z; Karahan E; Erdogan B; Bilgic B; Ozker M; Kasikci I; Duru AD; Ademoglu A; Oztürk C; Arikan K; Tarhan N; Demiralp T
    Clin EEG Neurosci; 2011 Apr; 42(2):98-106. PubMed ID: 21675599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency.
    Ding J; Sperling G; Srinivasan R
    Cereb Cortex; 2006 Jul; 16(7):1016-29. PubMed ID: 16221931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication.
    Kelly SP; Lalor EC; Reilly RB; Foxe JJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):172-8. PubMed ID: 16003896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials.
    Vanegas MI; Blangero A; Kelly SP
    J Neural Eng; 2013 Jun; 10(3):036003. PubMed ID: 23548662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives.
    Vialatte FB; Maurice M; Dauwels J; Cichocki A
    Prog Neurobiol; 2010 Apr; 90(4):418-38. PubMed ID: 19963032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSVEP phase synchronies and propagation during repetitive visual stimulation at high frequencies.
    Tsoneva T; Garcia-Molina G; Desain P
    Sci Rep; 2021 Mar; 11(1):4975. PubMed ID: 33654157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of encoding and retrieval on the steady-state visual evoked potential.
    Martens U; Gert AL; Gruber T
    Neuroreport; 2012 Apr; 23(6):337-41. PubMed ID: 22367760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of cognitive tasks on different frequencies steady-state visual evoked potentials.
    Wu Z; Yao D
    Brain Topogr; 2007; 20(2):97-104. PubMed ID: 17932738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.
    Lee PL; Sie JJ; Liu YJ; Wu CH; Lee MH; Shu CH; Li PH; Sun CW; Shyu KK
    Ann Biomed Eng; 2010 Jul; 38(7):2383-97. PubMed ID: 20177780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).
    Gregori Grgič R; Calore E; de'Sperati C
    Cortex; 2016 Jan; 74():31-52. PubMed ID: 26615517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state visually evoked potential correlates of object recognition.
    Kaspar K; Hassler U; Martens U; Trujillo-Barreto N; Gruber T
    Brain Res; 2010 Jul; 1343():112-21. PubMed ID: 20450897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-based classification of video quality perception using steady state visual evoked potentials (SSVEPs).
    Acqualagna L; Bosse S; Porbadnigk AK; Curio G; Müller KR; Wiegand T; Blankertz B
    J Neural Eng; 2015 Apr; 12(2):026012. PubMed ID: 25768913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.