BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16544308)

  • 1. Control of bisphosphonate release using hydroxyapatite granules.
    Seshima H; Yoshinari M; Takemoto S; Hattori M; Kawada E; Inoue T; Oda Y
    J Biomed Mater Res B Appl Biomater; 2006 Aug; 78(2):215-21. PubMed ID: 16544308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and dissolution studies of bisphosphonate (clodronate)-containing hydroxyapatite-polylactic acid biocomposites for slow drug delivery.
    Macha IJ; Cazalbou S; Shimmon R; Ben-Nissan B; Milthorpe B
    J Tissue Eng Regen Med; 2017 Jun; 11(6):1723-1731. PubMed ID: 26174121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute.
    Kim BS; Kang HJ; Yang SS; Lee J
    Biomed Mater; 2014 Apr; 9(2):025004. PubMed ID: 24487123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the interaction of seven bisphosphonates with the hydroxyapatite(100) face.
    Chen C; Xia M; Wu L; Zhou C; Wang F
    J Mol Model; 2012 Sep; 18(9):4007-12. PubMed ID: 22453641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and X-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone.
    Baji A; Wong SC; Liu T; Li T; Srivatsan TS
    J Biomed Mater Res B Appl Biomater; 2007 May; 81(2):343-50. PubMed ID: 17022054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bisphosphonate binding affinity as assessed by inhibition of carbonated apatite dissolution in vitro.
    Henneman ZJ; Nancollas GH; Ebetino FH; Russell RG; Phipps RJ
    J Biomed Mater Res A; 2008 Jun; 85(4):993-1000. PubMed ID: 17907244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid.
    Matsumoto T; Okazaki M; Inoue M; Hamada Y; Taira M; Takahashi J
    Biomaterials; 2002 May; 23(10):2241-7. PubMed ID: 11962665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite particles as a controlled release carrier of protein.
    Matsumoto T; Okazaki M; Inoue M; Yamaguchi S; Kusunose T; Toyonaga T; Hamada Y; Takahashi J
    Biomaterials; 2004 Aug; 25(17):3807-12. PubMed ID: 15020156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bisphosphonates suppress bone resorption by a direct effect on early osteoclast precursors without affecting the osteoclastogenic capacity of osteogenic cells: the role of protein geranylgeranylation in the action of nitrogen-containing bisphosphonates on osteoclast precursors.
    Van Beek ER; Löwik CW; Papapoulos SE
    Bone; 2002 Jan; 30(1):64-70. PubMed ID: 11792566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quick-forming hydroxyapatite/agarose gel composites induce bone regeneration.
    Watanabe J; Kashii M; Hirao M; Oka K; Sugamoto K; Yoshikawa H; Akashi M
    J Biomed Mater Res A; 2007 Dec; 83(3):845-52. PubMed ID: 17559128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on sintering process of synthetic hydroxyapatite.
    Malina D; Biernat K; Sobczak-Kupiec A
    Acta Biochim Pol; 2013; 60(4):851-5. PubMed ID: 24432345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-containing bisphosphonate mechanism of action.
    Reszka AA; Rodan GA
    Mini Rev Med Chem; 2004 Sep; 4(7):711-9. PubMed ID: 15379639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells.
    Coxon FP; Thompson K; Roelofs AJ; Ebetino FH; Rogers MJ
    Bone; 2008 May; 42(5):848-60. PubMed ID: 18325866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bisphosphonates: the first 40 years.
    Russell RG
    Bone; 2011 Jul; 49(1):2-19. PubMed ID: 21555003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology, thermal and mechanical properties of poly (ε-caprolactone) biocomposites reinforced with nano-hydroxyapatite decorated graphene.
    Zhou K; Gao R; Jiang S
    J Colloid Interface Sci; 2017 Jun; 496():334-342. PubMed ID: 28237751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite.
    Nancollas GH; Tang R; Phipps RJ; Henneman Z; Gulde S; Wu W; Mangood A; Russell RG; Ebetino FH
    Bone; 2006 May; 38(5):617-27. PubMed ID: 16046206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vivo assessment of minerals substituted hydroxyapatite / poly sorbitol sebacate glutamate (PSSG) composite coating on titanium metal implant for orthopedic implantation.
    Pan J; Prabakaran S; Rajan M
    Biomed Pharmacother; 2019 Nov; 119():109404. PubMed ID: 31526972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactivity in in situ hydroxyapatite-polycaprolactone composites.
    Verma D; Katti K; Katti D
    J Biomed Mater Res A; 2006 Sep; 78(4):772-80. PubMed ID: 16739180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.