BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16544579)

  • 1. The effect of three-dimensional glottal geometry on intraglottal quasi-steady flow distributions and their relationship with phonation.
    Li S; Scherer RC; Wan M; Wang S
    Sci China C Life Sci; 2006 Feb; 49(1):82-8. PubMed ID: 16544579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of glottal angle on intraglottal pressure.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of entrance radii on intraglottal pressure distributions in the divergent glottis.
    Li S; Scherer RC; Wan M; Wang S
    J Acoust Soc Am; 2012 Feb; 131(2):1371-7. PubMed ID: 22352510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape.
    Scherer RC; Torkaman S; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2010 Aug; 128(2):828-38. PubMed ID: 20707452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Vertical Glottal Duct Length on Intraglottal Pressures and Phonation Threshold Pressure in the Uniform Glottis.
    Li S; Scherer RC; Fulcher LP; Wang X; Qiu L; Wan M; Wang S
    J Voice; 2018 Jan; 32(1):8-22. PubMed ID: 28599995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure distributions in a static physical model of the hemilarynx: measurements and computations.
    Fulcher LP; Scherer RC; De Witt KJ; Thapa P; Bo Y; Kucinschi BR
    J Voice; 2010 Jan; 24(1):2-20. PubMed ID: 18538986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entrance loss coefficients and exit coefficients for a physical model of the glottis with convergent angles.
    Fulcher LP; Scherer RC; Anderson NV
    J Acoust Soc Am; 2014 Sep; 136(3):1312. PubMed ID: 25190404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L; Khosla S; Gutmark E
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Quantification of the Intraglottal Pressure: Modal Phonation and Voice Onset.
    DeJonckere PH; Lebacq J
    J Voice; 2020 Jul; 34(4):645.e19-645.e39. PubMed ID: 30658875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of the Intraglottal Pressure Induced by Flow Separation Vortices Using Large Eddy Simulation.
    Farbos de Luzan C; Oren L; Gutmark E; Khosla SM
    J Voice; 2021 Nov; 35(6):822-831. PubMed ID: 32273211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on the quasi-steady approximation of glottal flows.
    Honda T; Kanaya M; Tokuda IT; Bouvet A; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2022 May; 151(5):3129. PubMed ID: 35649918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscous effects in a static physical model of the uniform glottis.
    Fulcher LP; Scherer RC; Powell T
    J Acoust Soc Am; 2013 Aug; 134(2):1253-60. PubMed ID: 23927123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP; Scherer RC; Zhai G; Zhu Z
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
    Khosla S; Oren L; Ying J; Gutmark E
    Laryngoscope; 2014 Apr; 124 Suppl 2():S1-13. PubMed ID: 24510612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.