These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16545342)

  • 21. [Cell-penetrating peptide PEP-1-mediated transduction of enhanced green fluorescent protein into human umbilical vein endothelial cells].
    Dong X; Wang JN; Huang YZ; Guo LY; Kong X
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2007 Feb; 29(1):93-7. PubMed ID: 17380676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation.
    Yadav SC; Kumari A; Yadav R
    Peptides; 2011 Jan; 32(1):173-87. PubMed ID: 20934475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α2-mediated endocytosis.
    Wang B; Lv L; Wang Z; Zhao Y; Wu L; Fang X; Xu Q; Xin H
    Biomaterials; 2014 Jul; 35(22):5897-907. PubMed ID: 24743033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of amphipathic CPPs with model membranes.
    Deshayes S; Konate K; Aldrian G; Heitz F; Divita G
    Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression, purification and transduction of PEP-1-botulinum neurotoxin type A (PEP-1-BoNT/A) into skin.
    Kim DW; Kim SY; An JJ; Lee SH; Jang SH; Won MH; Kang TC; Chung KH; Jung HH; Cho SW; Choi JH; Park J; Eum WS; Choi SY
    J Biochem Mol Biol; 2006 Sep; 39(5):642-7. PubMed ID: 17002886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanotechnology for delivery of peptide nucleic acids (PNAs).
    Gupta A; Bahal R; Gupta M; Glazer PM; Saltzman WM
    J Control Release; 2016 Oct; 240():302-311. PubMed ID: 26776051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systemic administration of PEP-1-SOD1 fusion protein improves functional recovery by inhibition of neuronal cell death after spinal cord injury.
    Yune TY; Lee JY; Jiang MH; Kim DW; Choi SY; Oh TH
    Free Radic Biol Med; 2008 Oct; 45(8):1190-200. PubMed ID: 18722523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential.
    Henriques ST; Costa J; Castanho MA
    Biochemistry; 2005 Aug; 44(30):10189-98. PubMed ID: 16042396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide-Mediated Membrane Transport of Macromolecular Cargo Driven by Membrane Asymmetry.
    Li X; Huang J; Holden MA; Chen M
    Anal Chem; 2017 Nov; 89(22):12369-12374. PubMed ID: 29050472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PEP and CADY-mediated delivery of fluorescent peptides and proteins into living cells.
    Kurzawa L; Pellerano M; Morris MC
    Biochim Biophys Acta; 2010 Dec; 1798(12):2274-85. PubMed ID: 20188697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cell-penetrating peptide PEP-1-mediated transduction of enhanced green fluorescent protein into human colorectal cancer SW480 cells].
    Dong X; Wang JN; Huang YZ; Guo LY; Kong X
    Ai Zheng; 2007 Feb; 26(2):216-9. PubMed ID: 17298757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The delivery of biologically active (therapeutic) peptides and proteins into cells.
    Grdisa M
    Curr Med Chem; 2011; 18(9):1373-9. PubMed ID: 21366527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics.
    Deshayes S; Morris MC; Divita G; Heitz F
    J Pept Sci; 2006 Dec; 12(12):758-65. PubMed ID: 17131287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence segregation improves non-covalent protein delivery.
    Sgolastra F; Backlund CM; Ilker Ozay E; deRonde BM; Minter LM; Tew GN
    J Control Release; 2017 May; 254():131-136. PubMed ID: 28363520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of basic amphipathic peptides for cellular delivery of antisense peptide nucleic acids.
    Maier MA; Esau CC; Siwkowski AM; Wancewicz EV; Albertshofer K; Kinberger GA; Kadaba NS; Watanabe T; Manoharan M; Bennett CF; Griffey RH; Swayze EE
    J Med Chem; 2006 Apr; 49(8):2534-42. PubMed ID: 16610796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The protein truncation caused by fusion of PEP-1 peptide and protective roles of transduced PEP-1-MsrA in skin cells.
    Lee TH; Choi SH; Kim HY
    BMB Rep; 2011 Apr; 44(4):256-61. PubMed ID: 21524351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the use of amphipathic peptide-based protein carrier for in vitro cancer research.
    Lo SL; Wang S
    Biochem Biophys Res Commun; 2012 Mar; 419(2):170-4. PubMed ID: 22326265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein transduction domain delivery of therapeutic macromolecules.
    van den Berg A; Dowdy SF
    Curr Opin Biotechnol; 2011 Dec; 22(6):888-93. PubMed ID: 21489777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide-mediated cellular delivery of antisense oligonucleotides and their analogues.
    Gait MJ
    Cell Mol Life Sci; 2003 May; 60(5):844-53. PubMed ID: 12827274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide-based nanoparticle for ex vivo and in vivo drug delivery.
    Crombez L; Morris MC; Deshayes S; Heitz F; Divita G
    Curr Pharm Des; 2008; 14(34):3656-65. PubMed ID: 19075741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.