BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 16545456)

  • 1. Molecular mechanism of distorted iron regulation in the blood-CSF barrier and regional blood-brain barrier following in vivo subchronic manganese exposure.
    Li GJ; Choi BS; Wang X; Liu J; Waalkes MP; Zheng W
    Neurotoxicology; 2006 Sep; 27(5):737-44. PubMed ID: 16545456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood-CSF barrier in vitro.
    Li GJ; Zhao Q; Zheng W
    Toxicol Appl Pharmacol; 2005 Jun; 205(2):188-200. PubMed ID: 15893546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efflux of iron from the cerebrospinal fluid to the blood at the blood-CSF barrier: effect of manganese exposure.
    Wang X; Li GJ; Zheng W
    Exp Biol Med (Maywood); 2008 Dec; 233(12):1561-71. PubMed ID: 18849539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulation of DMT1 expression in choroidal epithelia of the blood-CSF barrier following manganese exposure in vitro.
    Wang X; Li GJ; Zheng W
    Brain Res; 2006 Jun; 1097(1):1-10. PubMed ID: 16729984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular localization and subsequent redistribution of metal transporters in a rat choroid plexus model following exposure to manganese or iron.
    Wang X; Miller DS; Zheng W
    Toxicol Appl Pharmacol; 2008 Jul; 230(2):167-74. PubMed ID: 18420243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preliminary study of biomarker in blood or cerebrospinal fluid of rat following manganese exposure].
    Zhang YS; Yao L; Hao YL; Zou Y; Xu HJ; Fan QY
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2010 Mar; 28(3):186-9. PubMed ID: 20635692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of copper transport crossing brain barrier systems by Cu-ATPases: effect of manganese exposure.
    Fu X; Zhang Y; Jiang W; Monnot AD; Bates CA; Zheng W
    Toxicol Sci; 2014 Jun; 139(2):432-51. PubMed ID: 24614235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter.
    Erikson KM; Aschner M
    Neurotoxicology; 2006 Jan; 27(1):125-30. PubMed ID: 16140386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of brain copper homeostasis by the brain barrier systems: effects of Fe-overload and Fe-deficiency.
    Monnot AD; Behl M; Ho S; Zheng W
    Toxicol Appl Pharmacol; 2011 Nov; 256(3):249-57. PubMed ID: 21315754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of iron homeostasis following chronic exposure to manganese in rats.
    Zheng W; Zhao Q; Slavkovich V; Aschner M; Graziano JH
    Brain Res; 1999 Jun; 833(1):125-32. PubMed ID: 10375687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foot-shock stress-induced regional iron accumulation and altered iron homeostatic mechanisms in rat brain.
    Ma L; Wang W; Zhao M; Li M
    Biol Trace Elem Res; 2008; 126(1-3):204-13. PubMed ID: 18709494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferrin and transferrin receptor function in brain barrier systems.
    Moos T; Morgan EH
    Cell Mol Neurobiol; 2000 Feb; 20(1):77-95. PubMed ID: 10690503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal responses in the disruption of iron regulation by manganese.
    Kwik-Uribe C; Smith DR
    J Neurosci Res; 2006 Jun; 83(8):1601-10. PubMed ID: 16568477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Potential Roles of Blood-Brain Barrier and Blood-Cerebrospinal Fluid Barrier in Maintaining Brain Manganese Homeostasis.
    McCabe SM; Zhao N
    Nutrients; 2021 May; 13(6):. PubMed ID: 34072120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A manganese-enhanced diet alters brain metals and transporters in the developing rat.
    Garcia SJ; Gellein K; Syversen T; Aschner M
    Toxicol Sci; 2006 Aug; 92(2):516-25. PubMed ID: 16705042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain.
    Siddappa AJ; Rao RB; Wobken JD; Leibold EA; Connor JR; Georgieff MK
    J Neurosci Res; 2002 Jun; 68(6):761-75. PubMed ID: 12111837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging.
    Fitsanakis VA; Zhang N; Anderson JG; Erikson KM; Avison MJ; Gore JC; Aschner M
    Toxicol Sci; 2008 May; 103(1):116-24. PubMed ID: 18234737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: An approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier.
    Nischwitz V; Berthele A; Michalke B
    Anal Chim Acta; 2008 Oct; 627(2):258-69. PubMed ID: 18809082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development.
    Wang Q; Luo W; Zheng W; Liu Y; Xu H; Zheng G; Dai Z; Zhang W; Chen Y; Chen J
    Toxicol Appl Pharmacol; 2007 Feb; 219(1):33-41. PubMed ID: 17234227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.