BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 16545515)

  • 41. The relevance of "non-relevant metabolites" from plant protection products (PPPs) for drinking water: the German view.
    Dieter HH
    Regul Toxicol Pharmacol; 2010 Mar; 56(2):121-5. PubMed ID: 19706317
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of bromate in drinking water by ultraperformance liquid chromatography-tandem mass spectrometry.
    Alsohaimi IH; Alothman ZA; Khan MR; Abdalla MA; Busquets R; Alomary AK
    J Sep Sci; 2012 Oct; 35(19):2538-43. PubMed ID: 22815069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement of bromate formation by pH depression during ozonation of bromide-containing water in the presence of hydroxylamine.
    Yang J; Li J; Dong W; Ma J; Yang Y; Li J; Yang Z; Zhang X; Gu J; Xie W; Cang Y
    Water Res; 2017 Feb; 109():135-143. PubMed ID: 27883918
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination.
    Chiang PC; Chang EE; Chuang CC; Liang CH; Huang CP
    Chemosphere; 2010 Jun; 80(3):327-33. PubMed ID: 20427073
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water.
    Hammes F; Salhi E; Köster O; Kaiser HP; Egli T; von Gunten U
    Water Res; 2006 Jul; 40(12):2275-86. PubMed ID: 16777174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bromate analysis in groundwater and wastewater samples.
    Butler R; Lytton L; Godley AR; Tothill IE; Cartmell E
    J Environ Monit; 2005 Oct; 7(10):999-1006. PubMed ID: 16193172
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor.
    Downing LS; Nerenberg R
    Biotechnol Bioeng; 2007 Oct; 98(3):543-50. PubMed ID: 17405178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of pre-ozonation on optimized coagulation of a typical North-China source water.
    Yan M; Wang D; Shi B; Wang M; Yan Y
    Chemosphere; 2007 Nov; 69(11):1695-702. PubMed ID: 17644153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Impact of chlorination and ozonization on the total mutagenic activity of drinking water].
    Zhurkov VS; Sokolovskiĭ VV; Mazhaeva TE; Mirkis VI; Borisov VI; Akhal'tseva LV
    Gig Sanit; 1997; (1):11-3. PubMed ID: 9081864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial bromate reduction following ozonation of bromide-rich wastewater in coastal areas.
    Falås P; Juárez R; Dell LA; Fransson S; Karlsson S; Cimbritz M
    Sci Total Environ; 2022 Oct; 841():156694. PubMed ID: 35714740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of organic matter, ammonia, bromide, and hydrogen peroxide on bromate formation during water ozonation.
    Wang Y; Man T; Zhang R; Yan X; Wang S; Zhang M; Wang P; Ren L; Yu J; Li C
    Chemosphere; 2021 Dec; 285():131352. PubMed ID: 34246937
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Research strategy for developing key information on bromate's mode of action.
    Bull RJ; Cottruvo JA
    Toxicology; 2006 Apr; 221(2-3):135-44. PubMed ID: 16298034
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.
    Genuino HC; Espino MP
    Arch Environ Contam Toxicol; 2012 Apr; 62(3):369-79. PubMed ID: 21892761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water.
    Kim JH; Elovitz MS; von Gunten U; Shukairy HM; Mariñas BJ
    Water Res; 2007 Jan; 41(2):467-75. PubMed ID: 17123571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An overview of bromate formation in chemical oxidation processes: Occurrence, mechanism, influencing factors, risk assessment, and control strategies.
    Yang J; Dong Z; Jiang C; Wang C; Liu H
    Chemosphere; 2019 Dec; 237():124521. PubMed ID: 31408797
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Study on bromate formation of catalytic ozonation process].
    Wu L; Yang HW; Yang SX; Lü M; Cheng W
    Huan Jing Ke Xue; 2011 Aug; 32(8):2279-83. PubMed ID: 22619950
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxidative DNA damage from potassium bromate exposure in Long-Evans rats is not enhanced by a mixture of drinking water disinfection by-products.
    McDorman KS; Pachkowski BF; Nakamura J; Wolf DC; Swenberg JA
    Chem Biol Interact; 2005 Apr; 152(2-3):107-17. PubMed ID: 15840384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biofiltration for removal of BOM and residual ammonia following control of bromate formation.
    Wert EC; Neemann JJ; Rexing DJ; Zegers RE
    Water Res; 2008 Jan; 42(1-2):372-8. PubMed ID: 17692888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. UV-based advanced oxidation processes for the treatment of odour compounds: efficiency and by-product formation.
    Zoschke K; Dietrich N; Börnick H; Worch E
    Water Res; 2012 Oct; 46(16):5365-73. PubMed ID: 22858230
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation of oxidation byproducts from ozonation of wastewater.
    Wert EC; Rosario-Ortiz FL; Drury DD; Snyder SA
    Water Res; 2007 Apr; 41(7):1481-90. PubMed ID: 17335867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.