BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16545534)

  • 1. Stability of warfarin solutions for drug-protein binding measurements: spectroscopic and chromatographic studies.
    Moser AC; Kingsbury C; Hage DS
    J Pharm Biomed Anal; 2006 Jun; 41(4):1101-9. PubMed ID: 16545534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic human serum albumin Sudlow I binding site mimics.
    Karlsson BC; Rosengren AM; Näslund I; Andersson PO; Nicholls IA
    J Med Chem; 2010 Nov; 53(22):7932-7. PubMed ID: 20973485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatographic analysis of carbamazepine binding to human serum albumin.
    Kim HS; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 816(1-2):57-66. PubMed ID: 15664334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of phenytoin binding to human serum albumin by high-performance affinity chromatography.
    Chen J; Ohnmacht C; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Sep; 809(1):137-45. PubMed ID: 15282104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site I on human albumin: differences in the binding of (R)- and (S)-warfarin.
    Bertucci C; Canepa A; Ascoli GA; Guimaraes LF; Felix G
    Chirality; 1999; 11(9):675-9. PubMed ID: 10506426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spectrophysics of warfarin: implications for protein binding.
    Karlsson BC; Rosengren AM; Andersson PO; Nicholls IA
    J Phys Chem B; 2007 Sep; 111(35):10520-8. PubMed ID: 17691835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin: characterization by high-performance affinity chromatography.
    Joseph KS; Moser AC; Basiaga SB; Schiel JE; Hage DS
    J Chromatogr A; 2009 Apr; 1216(16):3492-500. PubMed ID: 18926542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The HSA affinity of warfarin and flurbiprofen determined by fluorescence anisotropy measurements of camptothecin.
    Wybranowski T; Cyrankiewicz M; Ziomkowska B; Kruszewski S
    Biosystems; 2008 Dec; 94(3):258-62. PubMed ID: 18721856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stability study involving HPLC analysis of aqueous thiorphan solutions in the presence of human serum albumin.
    Kuijpers EA; den Hartigh J; Vermeij P
    Pharm Dev Technol; 1998 May; 3(2):185-92. PubMed ID: 9653755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE.
    Rich RL; Day YS; Morton TA; Myszka DG
    Anal Biochem; 2001 Sep; 296(2):197-207. PubMed ID: 11554715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance affinity monolith chromatography: development and evaluation of human serum albumin columns.
    Mallik R; Jiang T; Hage DS
    Anal Chem; 2004 Dec; 76(23):7013-22. PubMed ID: 15571354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic evidence for the presence of the cyclic hemiketal form of warfarin in aqueous solution: consequences for bioavailability.
    Rosengren AM; Karlsson BC
    Biochem Biophys Res Commun; 2011 Apr; 407(2):318-20. PubMed ID: 21382344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warfarin metabolites: stereochemical aspects of protein binding and displacement by phenylbutazone.
    Chan E; McLachlan AJ; Rowland M
    Chirality; 1993; 5(8):610-5. PubMed ID: 8305289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of thyroxine-albumin binding using high-performance affinity chromatography. I. Interactions at the warfarin and indole sites of albumin.
    Loun B; Hage DS
    J Chromatogr; 1992 Sep; 579(2):225-35. PubMed ID: 1429970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of new potential ACE inhibitor in the aqueous solutions of different pH.
    Roskar R; Simoncic Z; Gartner A; Kmetec V
    J Pharm Biomed Anal; 2009 Feb; 49(2):295-303. PubMed ID: 19135817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric and binding properties of Asp1-Glu382 truncated recombinant human serum albumin--an optical and NMR spectroscopic investigation.
    Fanali G; Pariani G; Ascenzi P; Fasano M
    FEBS J; 2009 Apr; 276(8):2241-50. PubMed ID: 19298387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of alpha(1)-acid glycoprotein for chromatographic studies of drug-protein binding.
    Xuan H; Hage DS
    Anal Biochem; 2005 Nov; 346(2):300-10. PubMed ID: 16225836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of warfarin influences the acid-base equilibrium of H242 in sudlow site I of human serum albumin.
    Perry JL; Goldsmith MR; Williams TR; Radack KP; Christensen T; Gorham J; Pasquinelli MA; Toone EJ; Beratan DN; Simon JD
    Photochem Photobiol; 2006; 82(5):1365-9. PubMed ID: 16563025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of prototypic drugs ibuprofen and warfarin on global chaotropic unfolding of human serum heme-albumin: a fast-field-cycling 1H-NMR relaxometric study.
    Fanali G; Ascenzi P; Fasano M
    Biophys Chem; 2007 Aug; 129(1):29-35. PubMed ID: 17531369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of specific albumin ligand markers used as modifiers on the separation of benzodiazepine enantiomers by chiral liquid chromatography on a human serum albumin column.
    Chosson E; Uzan S; Gimenez F; Wainer IW; Farinotti R
    Chirality; 1993; 5(2):71-7. PubMed ID: 8102067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.