These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 1654558)
1. Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene. Hadlaczky G; Praznovszky T; Cserpán I; Keresö J; Péterfy M; Kelemen I; Atalay E; Szeles A; Szelei J; Tubak V Proc Natl Acad Sci U S A; 1991 Sep; 88(18):8106-10. PubMed ID: 1654558 [TBL] [Abstract][Full Text] [Related]
2. De novo chromosome formation in rodent cells. Praznovszky T; Keresö J; Tubak V; Cserpán I; Fátyol K; Hadlaczky G Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11042-6. PubMed ID: 1722315 [TBL] [Abstract][Full Text] [Related]
3. Lambda CM8, a human sequence with putative centromeric function, does not map to the centromere but is present in one to two copies at 9qter. McGill NI; Fantes J; Cooke H Hum Mol Genet; 1992 Dec; 1(9):749-51. PubMed ID: 1302610 [TBL] [Abstract][Full Text] [Related]
4. Studies on the human chromosome 3 centromere with a newly cloned alphoid DNA probe. Delattre O; Bernard A; Malfoy B; Marlhens F; Viegas-Pequignot E; Brossard C; Haguenauer O; Creau-Goldberg N; N'guyen VC; Dutrillaux B Hum Hered; 1988; 38(3):156-67. PubMed ID: 2899543 [TBL] [Abstract][Full Text] [Related]
5. Characterization of single-copy probe from vicinity of centromere of human chromosome 1. Solus J; Jacquemin-Sablon A; Carine K; Waltzer E; Scheffler IE Somat Cell Mol Genet; 1988 Jul; 14(4):381-91. PubMed ID: 2840744 [TBL] [Abstract][Full Text] [Related]
6. Detection of restriction fragment length polymorphisms at the centromeres of human chromosomes by using chromosome-specific alpha satellite DNA probes: implications for development of centromere-based genetic linkage maps. Willard HF; Waye JS; Skolnick MH; Schwartz CE; Powers VE; England SB Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5611-5. PubMed ID: 3016709 [TBL] [Abstract][Full Text] [Related]
7. A 37-kb fragment common to the pericentromeric region of human chromosomes 13 and 21 and to the ancestral inactive centromere of chromosome 2. Charlieu JP; Laurent AM; Orti R; Viegas-Péquignot E; Bellis M; Roizès G Genomics; 1993 Mar; 15(3):576-81. PubMed ID: 8468052 [TBL] [Abstract][Full Text] [Related]
8. Molecular cytogenetics of alpha satellite DNA from chromosome 12: fluorescence in situ hybridization and description of DNA and array length polymorphisms. Greig GM; Parikh S; George J; Powers VE; Willard HF Cytogenet Cell Genet; 1991; 56(3-4):144-8. PubMed ID: 1675980 [TBL] [Abstract][Full Text] [Related]
9. The centromere: kinetochore complex. Vig BK Southeast Asian J Trop Med Public Health; 1995; 26 Suppl 1():68-76. PubMed ID: 8629145 [TBL] [Abstract][Full Text] [Related]
10. Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet (Beta vulgaris) genome analysis. Gindullis F; Dechyeva D; Schmidt T Genome; 2001 Oct; 44(5):846-55. PubMed ID: 11681609 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of two repetitive DNA fragments located near the centromere of the mouse X chromosome. Disteche CM; Tantravahi U; Gandy S; Eisenhard M; Adler D; Kunkel LM Cytogenet Cell Genet; 1985; 39(4):262-8. PubMed ID: 2932308 [TBL] [Abstract][Full Text] [Related]
12. New types of mouse centromeric satellite DNAs. Kuznetsova IS; Prusov AN; Enukashvily NI; Podgornaya OI Chromosome Res; 2005; 13(1):9-25. PubMed ID: 15791408 [TBL] [Abstract][Full Text] [Related]
13. Macromolecular organization of human centromeric regions reveals high-frequency, polymorphic macro DNA repeats. Jabs EW; Goble CA; Cutting GR Proc Natl Acad Sci U S A; 1989 Jan; 86(1):202-6. PubMed ID: 2911568 [TBL] [Abstract][Full Text] [Related]
14. Identification of Porto-1, a new repeated sequence that localises close to the centromere of chromosome 2 of Drosophila melanogaster. Coelho PA; Nurminsky D; Hartl D; Sunkel CE Chromosoma; 1996 Oct; 105(4):211-22. PubMed ID: 8854880 [TBL] [Abstract][Full Text] [Related]
15. Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen. Puechberty J; Laurent AM; Gimenez S; Billault A; Brun-Laurent ME; Calenda A; Marçais B; Prades C; Ioannou P; Yurov Y; Roizès G Genomics; 1999 Mar; 56(3):274-87. PubMed ID: 10087194 [TBL] [Abstract][Full Text] [Related]
16. Stable transformation of Drosophila Kc cells to antibiotic resistance with the bacterial neomycin resistance gene. Maisonhaute C; Echalier G FEBS Lett; 1986 Mar; 197(1-2):45-9. PubMed ID: 3005047 [TBL] [Abstract][Full Text] [Related]
17. A stable marker chromosome with a cryptic centromere: evidence for centromeric sequences associated with an inverted duplication. Sacchi N; Magnani I; Fuhrman-Conti AM; Monard SP; Darfler M Cytogenet Cell Genet; 1996; 73(1-2):123-9. PubMed ID: 8646879 [TBL] [Abstract][Full Text] [Related]
18. Amplification of large artificial chromosomes. Smith DR; Smyth AP; Moir DT Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8242-6. PubMed ID: 2236036 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of alphoid DNA sequences specific for the pericentric regions of chromosomes 4, 5, 9, and 19. Hulsebos T; Schonk D; van Dalen I; Coerwinkel-Driessen M; Schepens J; Ropers HH; Wieringa B Cytogenet Cell Genet; 1988; 47(3):144-8. PubMed ID: 2837365 [TBL] [Abstract][Full Text] [Related]
20. Construction and characterization of a partial library of yeast artificial chromosomes from human chromosome 21. Bellis M; Gérard A; Charlieu JP; Marçais B; Brun ME; Viegas-Péquignot E; Carter DA; Roizès G DNA Cell Biol; 1991 May; 10(4):301-10. PubMed ID: 2029338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]