BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16545688)

  • 1. Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans.
    Wang Y; Cao YY; Jia XM; Cao YB; Gao PH; Fu XP; Ying K; Chen WS; Jiang YY
    Free Radic Biol Med; 2006 Apr; 40(7):1201-9. PubMed ID: 16545688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of the oxidative stress response in Candida albicans.
    Kusch H; Engelmann S; Albrecht D; Morschhäuser J; Hecker M
    Proteomics; 2007 Mar; 7(5):686-97. PubMed ID: 17285563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cap1p plays regulation roles in redox, energy metabolism and substance transport: an investigation on Candida albicans under normal culture condition.
    Wang Y; Cao YY; Cao YB; Wang DJ; Jia XM; Fu XP; Zhang JD; Xu Z; Ying K; Chen WS; Jiang YY
    Front Biosci; 2007 Jan; 12():145-53. PubMed ID: 17127290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trehalose is an important mediator of Cap1p oxidative stress response in Candida albicans.
    Cao Y; Wang Y; Dai B; Wang B; Zhang H; Zhu Z; Xu Y; Cao Y; Jiang Y; Zhang G
    Biol Pharm Bull; 2008 Mar; 31(3):421-5. PubMed ID: 18310903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis.
    Zeng YB; Qian YS; Ma L; Gu HN
    Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways.
    Gónzalez-Párraga P; Alonso-Monge R; Plá J; Argüelles JC
    FEMS Yeast Res; 2010 Sep; 10(6):747-56. PubMed ID: 20608985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p.
    Zhang X; De Micheli M; Coleman ST; Sanglard D; Moye-Rowley WS
    Mol Microbiol; 2000 May; 36(3):618-29. PubMed ID: 10844651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans.
    Alarco AM; Raymond M
    J Bacteriol; 1999 Feb; 181(3):700-8. PubMed ID: 9922230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cap1p attenuates the apoptosis of Candida albicans.
    Dai BD; Wang Y; Zhao LX; Li DD; Li MB; Cao YB; Jiang YY
    FEBS J; 2013 Jun; 280(11):2633-43. PubMed ID: 23517286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cellular resistance against oxidative stress (H2O2) is independent of neutral trehalase (Ntc1p) activity in Candida albicans.
    Pendreño Y; González-Párraga P; Conesa S; Martínez-Esparza M; Aguinaga A; Hernández JA; Argüelles JC
    FEMS Yeast Res; 2006 Jan; 6(1):57-62. PubMed ID: 16423071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the response of Candida albicans cells to Silver(I).
    Rowan R; McCann M; Kavanagh K
    Med Mycol; 2010 May; 48(3):498-505. PubMed ID: 20370363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of promoter elements responsible for the regulation of MDR1 from Candida albicans, a major facilitator transporter involved in azole resistance.
    Rognon B; Kozovska Z; Coste AT; Pardini G; Sanglard D
    Microbiology (Reading); 2006 Dec; 152(Pt 12):3701-3722. PubMed ID: 17159223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis reveals a metabolism shift in a laboratory fluconazole-resistant Candida albicans strain.
    Yan L; Zhang JD; Cao YB; Gao PH; Jiang YY
    J Proteome Res; 2007 Jun; 6(6):2248-56. PubMed ID: 17432892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans.
    Fekete A; Emri T; Gyetvai A; Gazdag Z; Pesti M; Varga Z; Balla J; Cserháti C; Emody L; Gergely L; Pócsi I
    FEMS Yeast Res; 2007 Sep; 7(6):834-47. PubMed ID: 17498215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen peroxide-induced activation of defense mechanisms against oxidative stress in rat pancreatic acinar AR42J cells.
    Weber H; Hühns S; Jonas L; Sparmann G; Bastian M; Schuff-Werner P
    Free Radic Biol Med; 2007 Mar; 42(6):830-41. PubMed ID: 17320765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the Candida albicans Cap1p regulon.
    Znaidi S; Barker KS; Weber S; Alarco AM; Liu TT; Boucher G; Rogers PD; Raymond M
    Eukaryot Cell; 2009 Jun; 8(6):806-20. PubMed ID: 19395663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baicalein induces programmed cell death in Candida albicans.
    Dai BD; Cao YY; Huang S; Xu YG; Gao PH; Wang Y; Jiang YY
    J Microbiol Biotechnol; 2009 Aug; 19(8):803-9. PubMed ID: 19734718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RTA2, a novel gene involved in azole resistance in Candida albicans.
    Jia XM; Ma ZP; Jia Y; Gao PH; Zhang JD; Wang Y; Xu YG; Wang L; Cao YY; Cao YB; Zhang LX; Jiang YY
    Biochem Biophys Res Commun; 2008 Sep; 373(4):631-6. PubMed ID: 18601908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.