BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 16545691)

  • 1. Reactivity of carbon nanotubes: free radical generation or scavenging activity?
    Fenoglio I; Tomatis M; Lison D; Muller J; Fonseca A; Nagy JB; Fubini B
    Free Radic Biol Med; 2006 Apr; 40(7):1227-33. PubMed ID: 16545691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotubes: promising agents against free radicals.
    Galano A
    Nanoscale; 2010 Mar; 2(3):373-80. PubMed ID: 20644818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat.
    Muller J; Delos M; Panin N; Rabolli V; Huaux F; Lison D
    Toxicol Sci; 2009 Aug; 110(2):442-8. PubMed ID: 19429663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron.
    Kagan VE; Tyurina YY; Tyurin VA; Konduru NV; Potapovich AI; Osipov AN; Kisin ER; Schwegler-Berry D; Mercer R; Castranova V; Shvedova AA
    Toxicol Lett; 2006 Aug; 165(1):88-100. PubMed ID: 16527436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung.
    Crouzier D; Follot S; Gentilhomme E; Flahaut E; Arnaud R; Dabouis V; Castellarin C; Debouzy JC
    Toxicology; 2010 Jun; 272(1-3):39-45. PubMed ID: 20381574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes.
    Murray AR; Kisin E; Leonard SS; Young SH; Kommineni C; Kagan VE; Castranova V; Shvedova AA
    Toxicology; 2009 Mar; 257(3):161-71. PubMed ID: 19150385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Nanotubes and occupational medicine].
    Borrelli I
    G Ital Med Lav Ergon; 2007; 29(3 Suppl):851-2. PubMed ID: 18409997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The inhibitory effect of Lu-Duo-Wei on carbon disulfide-induced generation of hydroxyl radicals].
    Jian L; Lang HQ
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2003 Oct; 21(5):368-71. PubMed ID: 14761423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Carbon nanotubes (CNT) and nanoparticles (NP): interaction with lung epithelium and other biological systems].
    Magrini A; Bergamaschi A; Bergamaschi E
    G Ital Med Lav Ergon; 2006; 28(3):266-9. PubMed ID: 17144414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects.
    Fenoglio I; Greco G; Tomatis M; Muller J; Raymundo-Piñero E; Béguin F; Fonseca A; Nagy JB; Lison D; Fubini B
    Chem Res Toxicol; 2008 Sep; 21(9):1690-7. PubMed ID: 18636755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes.
    Shvedova AA; Kisin ER; Murray AR; Mouithys-Mickalad A; Stadler K; Mason RP; Kadiiska M
    Free Radic Biol Med; 2014 Aug; 73():154-65. PubMed ID: 24863695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period.
    Ellinger-Ziegelbauer H; Pauluhn J
    Toxicology; 2009 Dec; 266(1-3):16-29. PubMed ID: 19836432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl and superoxide radical scavenging abilities of chromonyl-thiazolidine-2,4-dione compounds.
    Kruk I; Bozdağ-Dündar O; Ertan R; Aboul-Enein HY; Michalska T
    Luminescence; 2009; 24(2):96-101. PubMed ID: 18785617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice.
    Tong H; McGee JK; Saxena RK; Kodavanti UP; Devlin RB; Gilmour MI
    Toxicol Appl Pharmacol; 2009 Sep; 239(3):224-32. PubMed ID: 19481103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses.
    Fenoglio I; Greco G; Livraghi S; Fubini B
    Chemistry; 2009; 15(18):4614-21. PubMed ID: 19291716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites.
    Sachindra NM; Sato E; Maeda H; Hosokawa M; Niwano Y; Kohno M; Miyashita K
    J Agric Food Chem; 2007 Oct; 55(21):8516-22. PubMed ID: 17894451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of melatonin and related indoles with free radicals: a computational study.
    Turjanski AG; Rosenstein RE; Estrin DA
    J Med Chem; 1998 Sep; 41(19):3684-9. PubMed ID: 9733493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: mechanistic aspects and antioxidant activity.
    Joshi R; Kumar S; Unnikrishnan M; Mukherjee T
    Free Radic Res; 2005 Nov; 39(11):1163-72. PubMed ID: 16298742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model.
    Inoue K; Koike E; Yanagisawa R; Hirano S; Nishikawa M; Takano H
    Toxicol Appl Pharmacol; 2009 Jun; 237(3):306-16. PubMed ID: 19371758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel fluorometric assay for hydroxyl radical scavenging capacity (HOSC) estimation.
    Moore J; Yin JJ; Yu LL
    J Agric Food Chem; 2006 Feb; 54(3):617-26. PubMed ID: 16448158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.