These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 16545695)
21. Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes. Scott MD; Wagner TC; Chiu DT Biochim Biophys Acta; 1993 Apr; 1181(2):163-8. PubMed ID: 8481405 [TBL] [Abstract][Full Text] [Related]
22. Role of glutathione in the adaptive tolerance to H2O2. Seo YJ; Lee JW; Lee EH; Lee HK; Kim HW; Kim YH Free Radic Biol Med; 2004 Oct; 37(8):1272-81. PubMed ID: 15451066 [TBL] [Abstract][Full Text] [Related]
23. Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells. Amer J; Goldfarb A; Fibach E Cytometry A; 2004 Jul; 60(1):73-80. PubMed ID: 15229859 [TBL] [Abstract][Full Text] [Related]
24. Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. Kiruthiga PV; Shafreen RB; Pandian SK; Arun S; Govindu S; Devi KP Chemosphere; 2007 Jul; 68(8):1511-8. PubMed ID: 17481694 [TBL] [Abstract][Full Text] [Related]
25. Glutathione-dependent reduction of arsenate in human erythrocytes--a process independent of purine nucleoside phosphorylase. Németi B; Gregus Z Toxicol Sci; 2004 Dec; 82(2):419-28. PubMed ID: 15470234 [TBL] [Abstract][Full Text] [Related]
26. Metabolic control of resistance of human epithelial cells to H2O2 and NO stresses. Le Goffe C; Vallette G; Charrier L; Candelon T; Bou-Hanna C; Bouhours JF; Laboisse CL Biochem J; 2002 Jun; 364(Pt 2):349-59. PubMed ID: 12023877 [TBL] [Abstract][Full Text] [Related]
27. Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement. Paim BA; Velho JA; Castilho RF; Oliveira HC; Vercesi AE Free Radic Biol Med; 2008 Feb; 44(3):444-51. PubMed ID: 17991444 [TBL] [Abstract][Full Text] [Related]
28. Effect of dihydrotestosterone on hydrogen peroxide-induced apoptosis of mouse embryonic stem cells. Lee SH; Heo JS; Lee MY; Han HJ J Cell Physiol; 2008 Jul; 216(1):269-75. PubMed ID: 18330893 [TBL] [Abstract][Full Text] [Related]
29. Role of superoxide and hydrogen peroxide in hypertension induced by an antagonist of adenosine receptors. Sousa T; Pinho D; Morato M; Marques-Lopes J; Fernandes E; Afonso J; Oliveira S; Carvalho F; Albino-Teixeira A Eur J Pharmacol; 2008 Jul; 588(2-3):267-76. PubMed ID: 18519134 [TBL] [Abstract][Full Text] [Related]
30. The GOX/CAT system: a novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Mueller S; Millonig G; Waite GN Adv Med Sci; 2009; 54(2):121-35. PubMed ID: 20022860 [TBL] [Abstract][Full Text] [Related]
31. Chronic exposure of neonatal cardiac myocytes to hydrogen peroxide enhances the expression of catalase. Lai CC; Peng M; Huang L; Huang WH; Chiu TH J Mol Cell Cardiol; 1996 May; 28(5):1157-63. PubMed ID: 8762051 [TBL] [Abstract][Full Text] [Related]
32. Pyrimidine 5'-nucleotidase and oxidative damage in red blood cells transfused to beta-thalassemic children. David O; Sacchetti L; Vota MG; Comino L; Perugini L; Pescarmona GP Haematologica; 1990; 75(4):313-8. PubMed ID: 2276676 [TBL] [Abstract][Full Text] [Related]
33. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Scott MD; Zuo L; Lubin BH; Chiu DT Blood; 1991 May; 77(9):2059-64. PubMed ID: 2018843 [TBL] [Abstract][Full Text] [Related]
34. Influence of exogenous iron and ascorbate on H2O2-induced glutathione oxidation in red cells. Baysal E; Sullivan SG; Stern A Biochem Int; 1988 Aug; 17(2):211-5. PubMed ID: 3190721 [TBL] [Abstract][Full Text] [Related]
35. Effects of silymarin on the proliferation and glutathione levels of peripheral blood mononuclear cells from beta-thalassemia major patients. Alidoost F; Gharagozloo M; Bagherpour B; Jafarian A; Sajjadi SE; Hourfar H; Moayedi B Int Immunopharmacol; 2006 Aug; 6(8):1305-10. PubMed ID: 16782543 [TBL] [Abstract][Full Text] [Related]
36. Chondrocyte antioxidant defences: the roles of catalase and glutathione peroxidase in protection against H2O2 dependent inhibition of proteoglycan biosynthesis. Baker MS; Feigan J; Lowther DA J Rheumatol; 1988 Apr; 15(4):670-7. PubMed ID: 3397978 [TBL] [Abstract][Full Text] [Related]
37. Antioxidant defense status of red blood cells of patients with beta-thalassemia and Ebeta-thalassemia. Chakraborty D; Bhattacharyya M Clin Chim Acta; 2001 Mar; 305(1-2):123-9. PubMed ID: 11249931 [TBL] [Abstract][Full Text] [Related]
38. Recycling of glutathione during oxidative stress in erythrocytes of the newborn. Clahsen PC; Moison RM; Holtzer CA; Berger HM Pediatr Res; 1992 Oct; 32(4):399-402. PubMed ID: 1437390 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the free α-hemoglobin pool in red blood cells: a new test providing a scale of β-thalassemia severity. Vasseur C; Pissard S; Domingues-Hamdi E; Marden MC; Galactéros F; Baudin-Creuza V Am J Hematol; 2011 Feb; 86(2):199-202. PubMed ID: 21264907 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]