These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16545820)

  • 1. A novel approach to assess post-yield energy dissipation of bone in tension.
    Wang X; Nyman JS
    J Biomech; 2007; 40(3):674-7. PubMed ID: 16545820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation dependence of progressive post-yield behavior of human cortical bone in compression.
    Dong XN; Acuna RL; Luo Q; Wang X
    J Biomech; 2012 Nov; 45(16):2829-34. PubMed ID: 22995144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
    Nyman JS; Leng H; Dong XN; Wang X
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):613-9. PubMed ID: 19716106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups.
    Nyman JS; Roy A; Reyes MJ; Wang X
    J Biomed Mater Res A; 2009 May; 89(2):521-9. PubMed ID: 18437693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related factors affecting the postyield energy dissipation of human cortical bone.
    Nyman JS; Roy A; Tyler JH; Acuna RL; Gayle HJ; Wang X
    J Orthop Res; 2007 May; 25(5):646-55. PubMed ID: 17266142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups.
    Leng H; Dong XN; Wang X
    J Biomech; 2009 Mar; 42(4):491-7. PubMed ID: 19150716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.
    Zioupos P; Hansen U; Currey JD
    J Biomech; 2008 Oct; 41(14):2932-9. PubMed ID: 18786670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial anisotropy in demineralized bovine cortical bone in compressive cyclic loading-unloading.
    Novitskaya E; Lee S; Lubarda VA; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):817-23. PubMed ID: 25427492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel method to analyze post-yield mechanical properties at trabecular bone tissue level.
    Carretta R; Luisier B; Bernoulli D; Stüssi E; Müller R; Lorenzetti S
    J Mech Behav Biomed Mater; 2013 Apr; 20():6-18. PubMed ID: 23455157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective mechanical properties of diaphyseal cortical bone in the canine femur.
    Autefage A; Palierne S; Charron C; Swider P
    Vet J; 2012 Nov; 194(2):202-9. PubMed ID: 22595311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of damage accumulation measures in human cortical bone.
    Jepsen KJ; Davy DT
    J Biomech; 1997 Sep; 30(9):891-4. PubMed ID: 9302611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel scratching approach for measuring age-related changes in the in situ toughness of bone.
    Wang X; Yoon YJ; Ji H
    J Biomech; 2007; 40(6):1401-4. PubMed ID: 16901491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-yield relaxation behavior of bovine cancellous bone.
    Burgers TA; Lakes RS; García-Rodríguez S; Piller GR; Ploeg HL
    J Biomech; 2009 Dec; 42(16):2728-33. PubMed ID: 19765712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progressive post-yield behavior of human cortical bone in shear.
    Dong XN; Luo Q; Wang X
    Bone; 2013 Mar; 53(1):1-5. PubMed ID: 23219946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.
    Abdel-Wahab AA; Alam K; Silberschmidt VV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of strain rate on the mechanical properties of human cortical bone.
    Hansen U; Zioupos P; Simpson R; Currey JD; Hynd D
    J Biomech Eng; 2008 Feb; 130(1):011011. PubMed ID: 18298187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineralization- and remodeling-unrelated improvement of the post-yield properties of rat cortical bone by high doses of olpadronate.
    Capozza RF; Mondelo N; Reina PS; Nocciolino L; Meta M; Roldan EJ; Ferretti JL; Cointry GR
    J Musculoskelet Neuronal Interact; 2013 Jun; 13(2):185-94. PubMed ID: 23728105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.