These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16545864)

  • 41. Rheological and Microstructural Characteristics of Canola Protein Isolate-Chitosan Complex Coacervates.
    Chang PG; Gupta R; Timilsena YP
    J Food Sci; 2019 May; 84(5):1104-1112. PubMed ID: 30994940
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rheological behavior of thermoreversible kappa-carrageenan/nanosilica gels.
    Daniel-da-Silva AL; Pinto F; Lopes-da-Silva JA; Trindade T; Goodfellow BJ; Gil AM
    J Colloid Interface Sci; 2008 Apr; 320(2):575-81. PubMed ID: 18279881
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interpenetrating network formation in agarose--kappa-carrageenan gel composites.
    Amici E; Clark AH; Normand V; Johnson NB
    Biomacromolecules; 2002; 3(3):466-74. PubMed ID: 12005516
    [TBL] [Abstract][Full Text] [Related]  

  • 44. K(+) and Na(+) effects on the gelation properties of kappa-Carrageenan.
    Mangione MR; Giacomazza D; Bulone D; Martorana V; Cavallaro G; San Biagio PL
    Biophys Chem; 2005 Feb; 113(2):129-35. PubMed ID: 15617819
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alkali cold gelation of whey proteins. Part I: sol-gel-sol(-gel) transitions.
    Mercadé-Prieto R; Gunasekaran S
    Langmuir; 2009 May; 25(10):5785-92. PubMed ID: 19432494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate.
    Flores-Jiménez NT; Ulloa JA; Silvas JEU; Ramírez JCR; Ulloa PR; Rosales PUB; Carrillo YS; Leyva RG
    Food Res Int; 2019 Jul; 121():947-956. PubMed ID: 31108830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of κ-carrageenan addition on protein structure and gel properties of salted duck egg white.
    Tang H; Tan L; Chen Y; Zhang J; Li H; Chen L
    J Sci Food Agric; 2021 Mar; 101(4):1389-1395. PubMed ID: 32835415
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phase behaviors involved in surimi gel system: Effects of phase separation on gelation of myofibrillar protein and kappa-carrageenan.
    Zhang T; Xu X; Ji L; Li Z; Wang Y; Xue Y; Xue C
    Food Res Int; 2017 Oct; 100(Pt 1):361-368. PubMed ID: 28873698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Raman spectroscopy determines structural changes associated with gelation properties of fish proteins recovered at alkaline pH.
    Thawornchinsombut S; Park JW; Meng G; Li-Chan EC
    J Agric Food Chem; 2006 Mar; 54(6):2178-87. PubMed ID: 16536593
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cation effects on swelling of kappa-carrageenan: a photon transmission study.
    Kara S; Tamerler C; Pekcan O
    Biopolymers; 2003 Oct; 70(2):240-51. PubMed ID: 14517912
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of κ-carrageenan on the gelation properties of oyster protein.
    Jiang S; Ma Y; Wang Y; Wang R; Zeng M
    Food Chem; 2022 Jul; 382():132329. PubMed ID: 35134723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microstructure of aggregated and nonaggregated kappa-carrageenan helices visualized by atomic force microscopy.
    Ikeda S; Morris VJ; Nishinari K
    Biomacromolecules; 2001; 2(4):1331-7. PubMed ID: 11777411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimizing delivery systems for cationic biopolymers: competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin.
    Lopez-Pena CL; McClements DJ
    Food Chem; 2014 Jun; 153():9-14. PubMed ID: 24491693
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular structure and properties of κ-carrageenan-gelatin gels.
    Derkach SR; Voron'ko NG; Kuchina YA; Kolotova DS; Gordeeva AM; Faizullin DA; Gusev YA; Zuev YF; Makshakova ON
    Carbohydr Polym; 2018 Oct; 197():66-74. PubMed ID: 30007659
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of urea on the three-dimensional structure, viscoelastic and thermal behavior of iota-carrageenan.
    Patel BK; Campanella OH; Janaswamy S
    Carbohydr Polym; 2013 Feb; 92(2):1873-9. PubMed ID: 23399231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The location of an engineered inter-subunit disulfide bond in factor for inversion stimulation (FIS) affects the denaturation pathway and cooperativity.
    Meinhold D; Beach M; Shao Y; Osuna R; Colón W
    Biochemistry; 2006 Aug; 45(32):9767-77. PubMed ID: 16893178
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release.
    Wu ZM; Zhang XG; Zheng C; Li CX; Zhang SM; Dong RN; Yu DM
    Eur J Pharm Sci; 2009 Jun; 37(3-4):198-206. PubMed ID: 19491006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fluorescence study on the gel-to-sol transition of kappa-carrageenan.
    Pekcan O; Tari O
    Int J Biol Macromol; 2004 Aug; 34(4):223-31. PubMed ID: 15374678
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel technique for differentiation of proteins in the development of acid gel structure from control and heat treated milk using confocal scanning laser microscopy.
    Dubert-Ferrandon A; Niranjan K; Grandison AS
    J Dairy Res; 2006 Nov; 73(4):423-30. PubMed ID: 16834815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of the heat-induced whey protein/kappa-casein complexes in the formation of acid milk gels: a kinetic study using rheology and confocal microscopy.
    Guyomarc'h F; Jemin M; Le Tilly V; Madec MN; Famelart MH
    J Agric Food Chem; 2009 Jul; 57(13):5910-7. PubMed ID: 19534462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.