BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 16546149)

  • 61. Comparison of different force fields for the study of disaccharides.
    Stortz CA; Johnson GP; French AD; Csonka GI
    Carbohydr Res; 2009 Nov; 344(16):2217-28. PubMed ID: 19758584
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Relation between glycosidic linkage, structure and dynamics of α- and β-glucans in water.
    Peesapati S; Sajeevan KA; Patel SK; Roy D
    Biopolymers; 2021 May; 112(5):e23423. PubMed ID: 33572006
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Conformation and dynamics at a flexible glycosidic linkage revealed by NMR spectroscopy and molecular dynamics simulations: analysis of β-L-Fucp-(1→6)-α-D-Glcp-OMe in water solution.
    Pendrill R; Säwén E; Widmalm G
    J Phys Chem B; 2013 Nov; 117(47):14709-22. PubMed ID: 24175957
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.
    Saito M; Okazaki I
    J Comput Chem; 2009 Dec; 30(16):2656-65. PubMed ID: 19396813
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Determination of the triple helical chain conformation of β-glucan by facile and reliable triple-detector size exclusion chromatography.
    Li S; Huang Y; Wang S; Xu X; Zhang L
    J Phys Chem B; 2014 Jan; 118(3):668-75. PubMed ID: 24400948
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ring inversion properties of 1→2, 1→3 and 1→6-linked hexopyranoses and their correlation with the conformation of glycosidic linkages.
    Plazinski W; Drach M; Plazinska A
    Carbohydr Res; 2016 Mar; 423():43-8. PubMed ID: 26878487
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural characterization of neutral and anionic glucans from Mesorhizobium loti.
    Kawaharada Y; Kiyota H; Eda S; Minamisawa K; Mitsui H
    Carbohydr Res; 2008 Sep; 343(14):2422-7. PubMed ID: 18667198
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility.
    Berglund J; Angles d'Ortoli T; Vilaplana F; Widmalm G; Bergenstråhle-Wohlert M; Lawoko M; Henriksson G; Lindström M; Wohlert J
    Plant J; 2016 Oct; 88(1):56-70. PubMed ID: 27385537
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structure and stability of (alpha-CD)3 aggregate and OEG@(alpha-CD)3 pseudorotaxane in aqueous solution: a molecular dynamics study.
    Anconi CP; Nascimento CS; De Almeida WB; Dos Santos HF
    J Phys Chem B; 2009 Jul; 113(29):9762-9. PubMed ID: 19603839
    [TBL] [Abstract][Full Text] [Related]  

  • 70. DFTMD studies of β-cellobiose: conformational preference using implicit solvent.
    Momany FA; Schnupf U
    Carbohydr Res; 2011 Apr; 346(5):619-30. PubMed ID: 21333280
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A beta-D-glucan isolated from the fruiting bodies of Hericium erinaceus and its aqueous conformation.
    Dong Q; Jia LM; Fang JN
    Carbohydr Res; 2006 May; 341(6):791-5. PubMed ID: 16458867
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computer simulations of the flexibility of a series of synthetic cyclic peptide analogues.
    Thomas A; Roux B; Smith JC
    Biopolymers; 1993 Aug; 33(8):1249-70. PubMed ID: 8364158
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dihedral angle principal component analysis of molecular dynamics simulations.
    Altis A; Nguyen PH; Hegger R; Stock G
    J Chem Phys; 2007 Jun; 126(24):244111. PubMed ID: 17614541
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence.
    Shen T; Langan P; French AD; Johnson GP; Gnanakaran S
    J Am Chem Soc; 2009 Oct; 131(41):14786-94. PubMed ID: 19824731
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The beta-turn scaffold of tripeptide containing an azaphenylalanine residue.
    Lee HJ; Park HM; Lee KB
    Biophys Chem; 2007 Jan; 125(1):117-26. PubMed ID: 16890344
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Glycosidic linkage rotations determine amylose stretching mechanism.
    Kuttel M; Naidoo KJ
    J Am Chem Soc; 2005 Jan; 127(1):12-3. PubMed ID: 15631424
    [TBL] [Abstract][Full Text] [Related]  

  • 77. NMR characterization of the structure of a beta-(1-->3)-D-glucan isolate from cultured fruit bodies of Sparassis crispa.
    Tada R; Harada T; Nagi-Miura N; Adachi Y; Nakajima M; Yadomae T; Ohno N
    Carbohydr Res; 2007 Dec; 342(17):2611-8. PubMed ID: 17868661
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Glycosyltransferase activity can be modulated by small conformational changes of acceptor substrates.
    Galan MC; Venot AP; Boons GJ
    Biochemistry; 2003 Jul; 42(28):8522-9. PubMed ID: 12859199
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Can current force fields reproduce ring puckering in 2-O-sulfo-alpha-L-iduronic acid? A molecular dynamics simulation study.
    Gandhi NS; Mancera RL
    Carbohydr Res; 2010 Mar; 345(5):689-95. PubMed ID: 20097328
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The (alpha-1,6) glycosidic bond of isomaltose: a tricky system for theoretical conformational studies.
    Javaroni F; Ferreira AB; da Silva CO
    Carbohydr Res; 2009 Jul; 344(10):1235-47. PubMed ID: 19508914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.