BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16546212)

  • 1. Characterization of the formation of amyloid protofibrils from barstar by mapping residue-specific fluorescence dynamics.
    Mukhopadhyay S; Nayak PK; Udgaonkar JB; Krishnamoorthy G
    J Mol Biol; 2006 May; 358(4):935-42. PubMed ID: 16546212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the heterogeneity and specificity of interpolypeptide interactions in amyloid protofibrils by measurement of site-specific fluorescence anisotropy decay kinetics.
    Jha A; Udgaonkar JB; Krishnamoorthy G
    J Mol Biol; 2009 Oct; 393(3):735-52. PubMed ID: 19716830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation.
    Kumar S; Udgaonkar JB
    J Mol Biol; 2009 Jan; 385(4):1266-76. PubMed ID: 19063899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein.
    Kumar S; Udgaonkar JB
    Biochemistry; 2009 Jul; 48(27):6441-9. PubMed ID: 19505087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of intra-molecular distances and site-specific dynamics in chemically unfolded barstar: evidence for denaturant-dependent non-random structure.
    Saxena AM; Udgaonkar JB; Krishnamoorthy G
    J Mol Biol; 2006 May; 359(1):174-89. PubMed ID: 16603185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein.
    Thirunavukkuarasu S; Jares-Erijman EA; Jovin TM
    J Mol Biol; 2008 May; 378(5):1064-73. PubMed ID: 18433772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of the aggregation-prone and disaggregation-prone regions of acylphosphatase.
    Calamai M; Tartaglia GG; Vendruscolo M; Chiti F; Dobson CM
    J Mol Biol; 2009 Apr; 387(4):965-74. PubMed ID: 18809411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the core tryptophan during the formation of a productive molten globule intermediate of barstar.
    Rami BR; Krishnamoorthy G; Udgaonkar JB
    Biochemistry; 2003 Jul; 42(26):7986-8000. PubMed ID: 12834351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do surfactants and DTT affect the size, dynamics, activity and growth of soluble lysozyme aggregates?
    Kumar S; Ravi VK; Swaminathan R
    Biochem J; 2008 Oct; 415(2):275-88. PubMed ID: 18549353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN.
    Souillac PO; Uversky VN; Fink AL
    Biochemistry; 2003 Jul; 42(26):8094-104. PubMed ID: 12834361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface expansion is independent of and occurs faster than core solvation during the unfolding of barstar.
    Sridevi K; Udgaonkar JB
    Biochemistry; 2003 Feb; 42(6):1551-63. PubMed ID: 12578368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluoroalcohol-induced modulation of the pathway of amyloid protofibril formation by barstar.
    Sekhar A; Udgaonkar JB
    Biochemistry; 2011 Feb; 50(5):805-19. PubMed ID: 21182336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of salt on the urea-unfolded form of barstar probed by m value measurements.
    Pradeep L; Udgaonkar JB
    Biochemistry; 2004 Sep; 43(36):11393-402. PubMed ID: 15350126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy.
    Lindgren M; Sörgjerd K; Hammarström P
    Biophys J; 2005 Jun; 88(6):4200-12. PubMed ID: 15764666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation-dependent anti-amyloid oligomer antibodies.
    Kayed R; Glabe CG
    Methods Enzymol; 2006; 413():326-44. PubMed ID: 17046404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp104 targets multiple intermediates on the amyloid pathway and suppresses the seeding capacity of Abeta fibrils and protofibrils.
    Arimon M; Grimminger V; Sanz F; Lashuel HA
    J Mol Biol; 2008 Dec; 384(5):1157-73. PubMed ID: 18851977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-lactoglobulin assembles into amyloid through sequential aggregated intermediates.
    Giurleo JT; He X; Talaga DS
    J Mol Biol; 2008 Sep; 381(5):1332-48. PubMed ID: 18590743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid fibrils formation and amorphous aggregation in concanavalin A.
    Vetri V; Canale C; Relini A; Librizzi F; Militello V; Gliozzi A; Leone M
    Biophys Chem; 2007 Jan; 125(1):184-90. PubMed ID: 16934387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of soluble amyloid oligomers from computer simulations.
    Melquiond A; Mousseau N; Derreumaux P
    Proteins; 2006 Oct; 65(1):180-91. PubMed ID: 16894607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.