BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 16547012)

  • 1. Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate.
    Cemazar M; Daly NL; Häggblad S; Lo KP; Yulyaningsih E; Craik DJ
    J Biol Chem; 2006 Mar; 281(12):8224-32. PubMed ID: 16547012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides.
    Daly NL; Clark RJ; Craik DJ
    J Biol Chem; 2003 Feb; 278(8):6314-22. PubMed ID: 12482862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative folding of the cystine knot motif in cyclotide proteins.
    Craik DJ; Daly NL
    Protein Pept Lett; 2005 Feb; 12(2):147-52. PubMed ID: 15723640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disulfide mapping of the cyclotide kalata B1. Chemical proof of the cystic cystine knot motif.
    Göransson U; Craik DJ
    J Biol Chem; 2003 Nov; 278(48):48188-96. PubMed ID: 12960160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis.
    Felizmenio-Quimio ME; Daly NL; Craik DJ
    J Biol Chem; 2001 Jun; 276(25):22875-82. PubMed ID: 11292835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins.
    Gruber CW; Cemazar M; Clark RJ; Horibe T; Renda RF; Anderson MA; Craik DJ
    J Biol Chem; 2007 Jul; 282(28):20435-46. PubMed ID: 17522051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein.
    Cemazar M; Joshi A; Daly NL; Mark AE; Craik DJ
    Structure; 2008 Jun; 16(6):842-51. PubMed ID: 18547517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of novel cyclotides from Viola hederaceae: solution structure and anti-HIV activity of vhl-1, a leaf-specific expressed cyclotide.
    Chen B; Colgrave ML; Daly NL; Rosengren KJ; Gustafson KR; Craik DJ
    J Biol Chem; 2005 Jun; 280(23):22395-405. PubMed ID: 15824119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cyclotide family of circular miniproteins: nature's combinatorial peptide template.
    Craik DJ; Cemazar M; Wang CK; Daly NL
    Biopolymers; 2006; 84(3):250-66. PubMed ID: 16440288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-stable peptide scaffolds for protein engineering-synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2.
    Leta Aboye T; Clark RJ; Craik DJ; Göransson U
    Chembiochem; 2008 Jan; 9(1):103-13. PubMed ID: 18058973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of the MCoTI-II plant defence knottin reveals a novel intermediate conformation that facilitates trypsin binding.
    Jones PM; George AM
    Sci Rep; 2016 Mar; 6():23174. PubMed ID: 26975976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmentation follows structure: top-down mass spectrometry elucidates the topology of engineered cystine-knot miniproteins.
    Reinwarth M; Avrutina O; Fabritz S; Kolmar H
    PLoS One; 2014; 9(10):e108626. PubMed ID: 25303319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acyclic permutants of naturally occurring cyclic proteins. Characterization of cystine knot and beta-sheet formation in the macrocyclic polypeptide kalata B1.
    Daly NL; Craik DJ
    J Biol Chem; 2000 Jun; 275(25):19068-75. PubMed ID: 10747913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting the oxidative folding of circular cystine knot miniproteins.
    Gunasekera S; Daly NL; Clark RJ; Craik DJ
    Antioxid Redox Signal; 2009 May; 11(5):971-80. PubMed ID: 19025420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies.
    Abdul Ghani H; Henriques ST; Huang YH; Swedberg JE; Schroeder CI; Craik DJ
    Biopolymers; 2017 Jan; 108(1):. PubMed ID: 27487329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure.
    Hernandez JF; Gagnon J; Chiche L; Nguyen TM; Andrieu JP; Heitz A; Trinh Hong T; Pham TT; Le Nguyen D
    Biochemistry; 2000 May; 39(19):5722-30. PubMed ID: 10801322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins.
    Heitz A; Hernandez JF; Gagnon J; Hong TT; Pham TT; Nguyen TM; Le-Nguyen D; Chiche L
    Biochemistry; 2001 Jul; 40(27):7973-83. PubMed ID: 11434766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant Expression of Cyclotides Using Expressed Protein Ligation.
    Campbell MJ; Su J; Camarero JA
    Methods Mol Biol; 2020; 2133():327-341. PubMed ID: 32144675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation of a key beta-turn promotes cyclotide oxidative folding.
    Tian S; de Veer SJ; Durek T; Wang CK; Craik DJ
    J Biol Chem; 2024 Apr; 300(4):107125. PubMed ID: 38432638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.