These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 16547012)
1. Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate. Cemazar M; Daly NL; Häggblad S; Lo KP; Yulyaningsih E; Craik DJ J Biol Chem; 2006 Mar; 281(12):8224-32. PubMed ID: 16547012 [TBL] [Abstract][Full Text] [Related]
2. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides. Daly NL; Clark RJ; Craik DJ J Biol Chem; 2003 Feb; 278(8):6314-22. PubMed ID: 12482862 [TBL] [Abstract][Full Text] [Related]
3. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Colgrave ML; Craik DJ Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180 [TBL] [Abstract][Full Text] [Related]
4. Oxidative folding of the cystine knot motif in cyclotide proteins. Craik DJ; Daly NL Protein Pept Lett; 2005 Feb; 12(2):147-52. PubMed ID: 15723640 [TBL] [Abstract][Full Text] [Related]
5. Disulfide mapping of the cyclotide kalata B1. Chemical proof of the cystic cystine knot motif. Göransson U; Craik DJ J Biol Chem; 2003 Nov; 278(48):48188-96. PubMed ID: 12960160 [TBL] [Abstract][Full Text] [Related]
6. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. Felizmenio-Quimio ME; Daly NL; Craik DJ J Biol Chem; 2001 Jun; 276(25):22875-82. PubMed ID: 11292835 [TBL] [Abstract][Full Text] [Related]
7. A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. Gruber CW; Cemazar M; Clark RJ; Horibe T; Renda RF; Anderson MA; Craik DJ J Biol Chem; 2007 Jul; 282(28):20435-46. PubMed ID: 17522051 [TBL] [Abstract][Full Text] [Related]
8. The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein. Cemazar M; Joshi A; Daly NL; Mark AE; Craik DJ Structure; 2008 Jun; 16(6):842-51. PubMed ID: 18547517 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of novel cyclotides from Viola hederaceae: solution structure and anti-HIV activity of vhl-1, a leaf-specific expressed cyclotide. Chen B; Colgrave ML; Daly NL; Rosengren KJ; Gustafson KR; Craik DJ J Biol Chem; 2005 Jun; 280(23):22395-405. PubMed ID: 15824119 [TBL] [Abstract][Full Text] [Related]
10. The cyclotide family of circular miniproteins: nature's combinatorial peptide template. Craik DJ; Cemazar M; Wang CK; Daly NL Biopolymers; 2006; 84(3):250-66. PubMed ID: 16440288 [TBL] [Abstract][Full Text] [Related]
11. Ultra-stable peptide scaffolds for protein engineering-synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2. Leta Aboye T; Clark RJ; Craik DJ; Göransson U Chembiochem; 2008 Jan; 9(1):103-13. PubMed ID: 18058973 [TBL] [Abstract][Full Text] [Related]
12. Computational analysis of the MCoTI-II plant defence knottin reveals a novel intermediate conformation that facilitates trypsin binding. Jones PM; George AM Sci Rep; 2016 Mar; 6():23174. PubMed ID: 26975976 [TBL] [Abstract][Full Text] [Related]
13. Fragmentation follows structure: top-down mass spectrometry elucidates the topology of engineered cystine-knot miniproteins. Reinwarth M; Avrutina O; Fabritz S; Kolmar H PLoS One; 2014; 9(10):e108626. PubMed ID: 25303319 [TBL] [Abstract][Full Text] [Related]
14. Acyclic permutants of naturally occurring cyclic proteins. Characterization of cystine knot and beta-sheet formation in the macrocyclic polypeptide kalata B1. Daly NL; Craik DJ J Biol Chem; 2000 Jun; 275(25):19068-75. PubMed ID: 10747913 [TBL] [Abstract][Full Text] [Related]
15. Dissecting the oxidative folding of circular cystine knot miniproteins. Gunasekera S; Daly NL; Clark RJ; Craik DJ Antioxid Redox Signal; 2009 May; 11(5):971-80. PubMed ID: 19025420 [TBL] [Abstract][Full Text] [Related]
16. Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Abdul Ghani H; Henriques ST; Huang YH; Swedberg JE; Schroeder CI; Craik DJ Biopolymers; 2017 Jan; 108(1):. PubMed ID: 27487329 [TBL] [Abstract][Full Text] [Related]
17. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Hernandez JF; Gagnon J; Chiche L; Nguyen TM; Andrieu JP; Heitz A; Trinh Hong T; Pham TT; Le Nguyen D Biochemistry; 2000 May; 39(19):5722-30. PubMed ID: 10801322 [TBL] [Abstract][Full Text] [Related]
18. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Heitz A; Hernandez JF; Gagnon J; Hong TT; Pham TT; Nguyen TM; Le-Nguyen D; Chiche L Biochemistry; 2001 Jul; 40(27):7973-83. PubMed ID: 11434766 [TBL] [Abstract][Full Text] [Related]
19. Recombinant Expression of Cyclotides Using Expressed Protein Ligation. Campbell MJ; Su J; Camarero JA Methods Mol Biol; 2020; 2133():327-341. PubMed ID: 32144675 [TBL] [Abstract][Full Text] [Related]
20. Nucleation of a key beta-turn promotes cyclotide oxidative folding. Tian S; de Veer SJ; Durek T; Wang CK; Craik DJ J Biol Chem; 2024 Apr; 300(4):107125. PubMed ID: 38432638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]