These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16547037)

  • 41. The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor.
    Yorimitsu T; Mimaki A; Yakushi T; Homma M
    J Mol Biol; 2003 Nov; 334(3):567-83. PubMed ID: 14623195
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility.
    Fang X; Gomelsky M
    Mol Microbiol; 2010 Jun; 76(5):1295-305. PubMed ID: 20444091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of a clockwise-locked deletion in FliG on the FliG ring structure of the bacterial flagellar motor.
    Kinoshita M; Namba K; Minamino T
    Genes Cells; 2018 Mar; 23(3):241-247. PubMed ID: 29405551
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A mutational analysis of the interaction between FliG and FliM, two components of the flagellar motor of Escherichia coli.
    Marykwas DL; Berg HC
    J Bacteriol; 1996 Mar; 178(5):1289-94. PubMed ID: 8631704
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H(+) channels in the stator Complex.
    Braun TF; Blair DF
    Biochemistry; 2001 Oct; 40(43):13051-9. PubMed ID: 11669643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor.
    Lynch MJ; Levenson R; Kim EA; Sircar R; Blair DF; Dahlquist FW; Crane BR
    Structure; 2017 Feb; 25(2):317-328. PubMed ID: 28089452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CW and CCW Conformations of the E. coli Flagellar Motor C-Ring Evaluated by Fluorescence Anisotropy.
    Hosu BG; Berg HC
    Biophys J; 2018 Feb; 114(3):641-649. PubMed ID: 29414710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two translation products of Yersinia yscQ assemble to form a complex essential to type III secretion.
    Bzymek KP; Hamaoka BY; Ghosh P
    Biochemistry; 2012 Feb; 51(8):1669-77. PubMed ID: 22320351
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rusty, jammed, and well-oiled hinges: Mutations affecting the interdomain region of FliG, a rotor element of the Escherichia coli flagellar motor.
    Van Way SM; Millas SG; Lee AH; Manson MD
    J Bacteriol; 2004 May; 186(10):3173-81. PubMed ID: 15126479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Overproduction of the bacterial flagellar switch proteins and their interactions with the MS ring complex in vitro.
    Oosawa K; Ueno T; Aizawa S
    J Bacteriol; 1994 Jun; 176(12):3683-91. PubMed ID: 8206846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interacting components of the flagellar motor of Escherichia coli revealed by the two-hybrid system in yeast.
    Marykwas DL; Schmidt SA; Berg HC
    J Mol Biol; 1996 Mar; 256(3):564-76. PubMed ID: 8604139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton-induced conformational change.
    Kim EA; Price-Carter M; Carlquist WC; Blair DF
    Biochemistry; 2008 Oct; 47(43):11332-9. PubMed ID: 18834143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptive remodelling by FliN in the bacterial rotary motor.
    Branch RW; Sayegh MN; Shen C; Nathan VSJ; Berg HC
    J Mol Biol; 2014 Sep; 426(19):3314-3324. PubMed ID: 25046382
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.
    Pandini A; Kleinjung J; Rasool S; Khan S
    PLoS One; 2015; 10(11):e0142407. PubMed ID: 26561852
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Roles of the extreme N-terminal region of FliH for efficient localization of the FliH-FliI complex to the bacterial flagellar type III export apparatus.
    Minamino T; Yoshimura SD; Morimoto YV; González-Pedrajo B; Kami-Ike N; Namba K
    Mol Microbiol; 2009 Dec; 74(6):1471-83. PubMed ID: 19889085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanisms of type III protein export for bacterial flagellar assembly.
    Minamino T; Imada K; Namba K
    Mol Biosyst; 2008 Nov; 4(11):1105-15. PubMed ID: 18931786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of FliG three amino acids deletion in Vibrio polar-flagellar rotation and formation.
    Onoue Y; Kojima S; Homma M
    J Biochem; 2015 Dec; 158(6):523-9. PubMed ID: 26142283
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The FliN-FliH interaction mediates localization of flagellar export ATPase FliI to the C ring complex.
    McMurry JL; Murphy JW; González-Pedrajo B
    Biochemistry; 2006 Oct; 45(39):11790-8. PubMed ID: 17002279
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli.
    Lloyd SA; Blair DF
    J Mol Biol; 1997 Mar; 266(4):733-44. PubMed ID: 9102466
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flagellar formation in C-ring-defective mutants by overproduction of FliI, the ATPase specific for flagellar type III secretion.
    Konishi M; Kanbe M; McMurry JL; Aizawa S
    J Bacteriol; 2009 Oct; 191(19):6186-91. PubMed ID: 19648242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.