These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 16547073)

  • 41. CAALIGN: a program for pairwise and multiple protein-structure alignment.
    Oldfield TJ
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):514-25. PubMed ID: 17372357
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing the performance of fold recognition methods by means of a comprehensive benchmark.
    Fischer D; Elofsson A; Rice D; Eisenberg D
    Pac Symp Biocomput; 1996; ():300-18. PubMed ID: 9390240
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein Fold Recognition by Combining Support Vector Machines and Pairwise Sequence Similarity Scores.
    Yan K; Wen J; Liu JX; Xu Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):2008-2016. PubMed ID: 31940548
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SnapDRAGON: a method to delineate protein structural domains from sequence data.
    George RA; Heringa J
    J Mol Biol; 2002 Feb; 316(3):839-51. PubMed ID: 11866536
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry.
    Karchin R; Cline M; Mandel-Gutfreund Y; Karplus K
    Proteins; 2003 Jun; 51(4):504-14. PubMed ID: 12784210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EvDTree: structure-dependent substitution profiles based on decision tree classification of 3D environments.
    Gelly JC; Chiche L; Gracy J
    BMC Bioinformatics; 2005 Jan; 6():4. PubMed ID: 15638949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fold recognition by predicted alignment accuracy.
    Xu J
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):157-65. PubMed ID: 17044180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination.
    Lobley A; Sadowski MI; Jones DT
    Bioinformatics; 2009 Jul; 25(14):1761-7. PubMed ID: 19429599
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards index-based similarity search for protein structure databases.
    Camoğlu O; Kahveci T; Singh AK
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():148-58. PubMed ID: 16452789
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional bioinformatics for Arabidopsis thaliana.
    Clare A; Karwath A; Ougham H; King RD
    Bioinformatics; 2006 May; 22(9):1130-6. PubMed ID: 16481336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The utility of artificially evolved sequences in protein threading and fold recognition.
    Brylinski M
    J Theor Biol; 2013 Jul; 328():77-88. PubMed ID: 23542050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. QUASAR--scoring and ranking of sequence-structure alignments.
    Birzele F; Gewehr JE; Zimmer R
    Bioinformatics; 2005 Dec; 21(24):4425-6. PubMed ID: 16216828
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fold recognition via a tree.
    Chen Y; Crippen GM
    J Comput Biol; 2006 Nov; 13(9):1565-73. PubMed ID: 17147479
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Iterative sequence/secondary structure search for protein homologs: comparison with amino acid sequence alignments and application to fold recognition in genome databases.
    Wallqvist A; Fukunishi Y; Murphy LR; Fadel A; Levy RM
    Bioinformatics; 2000 Nov; 16(11):988-1002. PubMed ID: 11159310
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The distance-profile representation and its application to detection of distantly related protein families.
    Ku CJ; Yona G
    BMC Bioinformatics; 2005 Nov; 6():282. PubMed ID: 16316461
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring the sequence-structure protein landscape in the glycosyltransferase family.
    Zhang Z; Kochhar S; Grigorov M
    Protein Sci; 2003 Oct; 12(10):2291-302. PubMed ID: 14500887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.